

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

BENCHMARKING AND ANALYSIS OF THE SRC-6E

RECONFIGURABLE COMPUTING SYSTEM

by

Kendrick R. Macklin

December 2003

 Thesis Advisor: Douglas Fouts
 Co-Advisor: Theodore Lewis

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gath-
ering and maintaining the data needed, and completing and reviewing the collection of informa-
tion. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Ser-
vices, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Benchmarking and Analysis of the
SRC-6E Reconfigurable Computing System

6. AUTHOR(S) Kendrick R. Macklin

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis evaluates the usefulness of the SRC-6E reconfigurable computing

system for a radar signal processing application and documents the process of creat-

ing and importing VHDL code to configure the user definable logic on the SRC-6E. A

false-target radar-imaging algorithm was chosen and implemented on the SRC-6E. Data

from alternative computational approaches to the same problem are compared to deter-

mine the effectiveness of SRC-6E solution. The results show that the implementation

of the algorithm does not provide an effective solution when executed on the SRC-6E.

An evaluation of the SRC-6E difficulty of use is conducted, including a discussion of

required skills, experience and development times. The algorithm test code and col-

lected data are included as appendices.

15. NUMBER OF
PAGES 149

14. SUBJECT TERMS
Benchmark, Reconfigurable Computing, VHDL, SRC-6E, FPGA, False Radar
Target Synthesis

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

BENCHMARKING AND ANALYSIS OF THE SRC-6E RECONFIGURABLE
COMPUTING SYSTEM

Kendrick R. Macklin

Lieutenant, United States Naval Reserve
B.S., San Diego State University, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2003

Author: Kendrick R. Macklin

Approved by: Douglas Fouts

Thesis Advisor

Ted Lewis
Co-Advisor

John P. Powers
Chairman
Department of Computer and Electrical
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis evaluates the usefulness of the SRC-6E re-

configurable computing system for a radar signal processing

application and documents the process of creating and im-

porting VHDL code to configure the user definable logic on

the SRC-6E. A false-target radar-imaging algorithm was

chosen and implemented on the SRC-6E. Data from alterna-

tive computational approaches to the same problem are com-

pared to determine the effectiveness of SRC-6E solution.

The results show that the implementation of the algorithm

does not provide an effective solution when executed on the

SRC-6E. An evaluation of the SRC-6E difficulty of use is

conducted, including a discussion of required skills, ex-

perience and development times. The algorithm test code

and collected data are included as appendices.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. PURPOSE ..1
B. FALSE TARGET RADAR IMAGING ALGORITHM1
C. FALSE-TARGET RADAR-IMAGING CHIP DESIGN2
D. FALSE-TARGET RADAR-IMAGING PROGRAM DESIGN5
E. REMAINING CHAPTER OUTLINE7

II. SRC-6E ARCHITECTURE AND SOFTWARE ENVIRONMENT9
A. INTRODUCTION9
B. SRC-6E HARDWARE OVERVIEW9
C. SOFTWARE ENVIRONMENT11

1. Operating System11
2. Programming Environment11

D. MAJOR DOCUMENTATION12
1. SRC-6E C Programming Environment Guide12
2. SRC-6E Fortran Programming Environment Guide .12
3. SRC-6E MAP Hardware Guide12
4. SRC-6E MAP Macro Developers Guide12
5. Macro Data Sheet Library13

III. DEVELOPMENT AND TESTING IN VHDL WITH ALDEC ACTIVE-HDL
5.2 ..15
A. INTRODUCTION15
B. FUNCTIONAL BLOCKS15

1. D-Type Flip Flops15
2. Adders15
3. Look-Up Table (LUT)16
4. Control Logic Block (CLB)16
5. Gain Shifter16
6. One Range Bin18
7. Two Range Bins18
8. Four Range Bins18

IV. PORTING THE VHDL CODE TO THE SRC-6E19
A. INTRODUCTION19
B. THE SRC-6E FILE TYPES19

1. .info ..19
2. .box ...19
3. .mc ..20
4. .c ...20
5. makefile20
6. .vhd ...20
7. Other Types20

 viii

C. CODE DEVELOPMENT21
1. Version 1.021
2. Version 1.121
3. Version 1.222
4. Version 2.022
5. Version 2.122
6. Version 2.223
7. Version 2.323
8. Version 2.424
9. Version 2.524
10. Version 3.025

D. SYNTHESIZABLITY25
1. Gain Shifter Changes25
2. LUT Changes26

E. TIMING FAILURES26
1. Single 8-bit CLAH27
2. Three 4-bit CLAH28
3. Two 4-bit and one 8-bit CLAH28

F. MEMORY ALLOCATION CHANGES28
V. DATA COLLECTION AND TIMING ANALYSIS31

A. INTRODUCTION31
B. BENCHMARK TEST PLATFORMS31

1. C Program Executed on a Windows-based
Machine31

2. C Program Executed on the SRC-6E31
3. VHDL Code on the SRC-6E MAP31

C. TIMING DATA COLLECTION METHOD32
D. TIMING DATA ANALYSIS33

1. Methods33
2. Results33
3. Conclusions37

VI. CONCLUSIONS ..39
A. INTRODUCTION39
B. DIFFICULTY OF USE39

1. Necessary Skills39
2. Experience Level39
3. Development Time40

C. APPROPRIATENESS OF THIS ALGORITHM40
D. RECOMMENDATIONS FOR FUTURE WORK40

1. Develop Implementation of More Range Bins. ...40
2. Develop a More User-Friendly Programming

Environment.41
3. Testing Other Applications.41

APPENDIX A ..43
A. CHIP2_SIM.C43

 ix

APPENDIX B ..51
A. D-TYPE FLIP FLOP51
B. 5-BIT REGISTER51
C. 8-BIT REGISTER52
D. 13-BIT REGISTER53
E. 17-BIT REGISTER54
F. FULL ADDER ..55
G. FULL ADDER WITH OVERFLOW SIGNAL55
H. 5-BIT ADDER56
I. 16-BIT ADDER WITH OVERFLOW SIGNAL56
J. LUT ...57
K. CONTROL LOGIC BLOCK58
L. SHIFTER ...59
M. ONE RANGE BIN60
N. TWO RANGE BINS63
O. FOUR RANGE BINS64

APPENDIX C ..67
A. MACRO VHDL FILE67
B. MAKEFILE ..84
C. MACRO INFO FILE85
D. MACRO BLACKBOX FILE86
E. C DRIVER PROGRAM86
F. MAP CODE FILE92
G. SAMPLE PHASE SAMPLE INPUT FILE93
H. SAMPLE RANGE BIN GAIN INPUT FILE93
I. SAMPLE SCREEN OUTPUT94
J. SAMPLE OUTPUT DATA FILE94
K. SAMPLE RANGE BIN PHASE ROTATION INPUT FILE95

APPENDIX D ..97
A. SRC-6E MACRO DATA97
B. SRC-6E C PROGRAM DATA119
C. WINDOWS C PROGRAM DATA121

LIST OF REFERENCES ...125
INITIAL DISTRIBUTION LIST127

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. False Target Radar Imaging Algorithm Usage2
Figure 2. False Target Radar Image Chip Signal Flow3
Figure 3. Internal Design of the Control Logic5
Figure 4. Signal Flow for Four Cascaded Range Bins6
Figure 5. SRC-6E System Diagram (After Ref. 2.)9
Figure 6. MAP Interface Block Diagram (From Ref. 2.)10
Figure 7. 16-bit Adder Versions27
Figure 8. Comparison of Average Total Time33
Figure 9. Semi-Log Comparison of Average Total Time34
Figure 10. Comparison of Average Time per Sample35
Figure 11. Semi-Log Comparison of Average Time per Sample ...36
Figure 12. Comparison of Average Time per Sample36

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. False-Target Radar-Imaging Program Example Using

Four Range Bins6
Table 2. Gain Shifter Operational Data (After Ref. 9.)17

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGEMENTS

I would like to thank Professor Russ Duren, formerly of the
Naval Postgraduate School, but now at Baylor University,
for donating his personal time and expertise to help me de-
bug my code on several occasions. Without his assistance,
the focus of this thesis would have been how I could not
make the algorithm work on this computer as opposed to a
presentation of benchmarks and results.

I would also like to acknowledge David Caliga of SRC Com-
puters, Inc. for providing personal assistance in helping
me to understand and use the SRC-6E computer. His help
went well beyond what I would normally expect from that re-
quired by a technical support contract by personally debug-
ging my code on several occasions.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

The purpose of this research was to evaluate the per-

formance, correctness, and ease of use of the SRC-6E recon-

figurable computing system built by SRC Computers, Inc.,

and also to aid in establishing a broad base of knowledge

on what types of applications are appropriate for implemen-

tation on this type of machine. To this end, it was neces-

sary to first choose a readily available yet suitably com-

plex algorithm for implementation on the SRC-6E. The algo-

rithm chosen was based on a custom chip design previously

developed by a faculty/student research team at the Naval

Postgraduate School which creates false target radar im-

ages. A C language program, written by Professor Douglas

Fouts, was also available to use as a standard for compar-

ing the accuracy of results throughout the research.

Reconfigurable computing is defined as “the capability

of reprogramming hardware to execute logic that is designed

and optimized for a specific user’s algorithms” [1]. The

SRC-6E reconfigurable computer is a Linux-based system con-

sisting of two independent sides labeled A and B which each

contain motherboards holding dual Intel P3 Xeon 1-GHz proc-

essors, 1.5 gigabytes of memory, and a SNAP interface card.

The SNAP card is a custom interface card which plugs into a

motherboard DIMM memory slot and provides connections to

the MAP board which is located in a third section of the

system. A single MAP board consists of two independent

MAPs. MAP, a registered trademark of SRC Computers, Inc.,

is the name for the custom hardware. Each MAP consists of

three Xilinx Virtex-II-series XC2V6000 FPGAs and 24 mega-

bytes of memory. One of the FPGAs is reserved for “control

 xviii

logic” while the other two, available for user programs,

are called “user logic”. The memory is split into six

equal banks, labeled A through F, of 4 megabytes each. The

user FPGAs are connected to a fixed 100-MHz clock.

 Code written in the hardware description languages

Verilog and/or VHDL can be ported for use on the SRC-6E

with only minor changes. Several support files are re-

quired to make the code target the user logic. These files

primarily describe the interfaces to the code. The algo-

rithm selected for the research described here was written

in VHDL and converted for use on the SRC-6E.

In order to evaluate the effectiveness of the SRC-6E,

timing data was collected from several sources. The first

data source was the executable created on the SRC-6E which

utilizes the reconfigurable user logic. The second data

source was a C program which performs the same functional-

ity as the VHDL code. This code was compiled and executed

on a 3-GHz Pentium 4 system, utilizing 2 gigabytes of DIMM

memory and the Windows XP Professional operating system.

The third data source was the same C program running on the

1-GHz Xeon processor on the Linux based SRC-6E (but not us-

ing the MAP). Several input data sets were created for

testing. Each individual input data value consists of a 5-

bit number, written as two hexadecimal digits, which repre-

sent an intercepted radar signal. Data sets containing 32,

64, 128, 256, 512, 1024, 2048, 4096, 8192, 16284, 32786,

65536, 131072, 262144, and 500000 data values were used.

Five timing runs were conducted for each data set on all

three data sources.

 xix

The timing data shows the SRC-6E MAP execution time is

extremely fast, even for very large data set sizes. How-

ever, the total execution time for the SRC-6E VHDL macro

takes considerably longer than all other benchmark sources.

The extra time represents delays in the system to prepare

and transfer the data in and out of the MAP which cause the

SRC-6E execution time to be longer for all input set sizes,

initially by an order of magnitude.

As input set size is increased the timing results be-

gin to converge. The overhead in the SRC VHDL macro

clearly dominates the results for smaller sample set sizes.

However, for larger sample set sizes, the overhead time is

amortized over the total time to be nearly insignificant.

Presumably, the SRC macro total execution time would even-

tually meet the other benchmark platforms if the sample set

size could be further increased. However, this is not pos-

sible with the current macro design due to the memory de-

sign of the SRC-6E hardware.

Programming the SRC-6E to use user-defined macros re-

quires knowledge of high-level programming languages, hard-

ware description languages, hardware component design, and

synthesizability. Relatively few people possess all of

these skills to use the system effectively without first

receiving significant training. However, programming the

system using only high-level languages of C or Fortran is

possible which widens the potential user base to many more

people. More research needs to be performed to determine

if either method produces more effective solutions.

The SRC-6E has a relatively steep learning curve.

There are a few examples in the documentation and a very

 xx

small body of work in place using the system. The errors

generated by the system during development are not intui-

tive and cannot be solved without previous experience with

solving the same errors. There are no development tools in

place to assist novice users in programming the system.

More research is required to see how much experience on the

system is required to prevent and or recognize these types

of errors quickly.

The development time to implement solutions on this

system appears to be high, primarily due to the steep

learning curve and lack of development tools. More re-

search must be performed to quantify the development time

and see how it improves once a group of experienced repeat

users is grown. No research has yet been performed with

large projects, employing multiple programmers, to see if

the total project time can be reduced effectively.

Since it is pipelined and supports parallel process-

ing, the chosen implementation of the false-target radar-

imaging algorithm appears to be one that would benefit from

a reconfigurable computer. However, the current implemen-

tation has been shown to lack the necessary parallelism re-

quired to fully utilize the hardware and make it effective.

Without increases in the memory size allocated for the user

logic, the implementation on the SRC-6E is not an effective

solution in terms of development time, processing time, or

cost-effectiveness.

1

I. INTRODUCTION

A. PURPOSE

The purpose of this research was to evaluate the per-

formance, correctness, and ease of use of the SRC-6E recon-

figurable computing system built by SRC Computers, Inc.,

and also to aid in establishing a broad base of knowledge

on what types of applications are appropriate for implemen-

tation on this type of machine. To this end, it was neces-

sary to first choose a readily available yet suitably com-

plex algorithm for implementation on the SRC-6E. The algo-

rithm chosen was based on a custom chip design previously

developed by a faculty/student research team at the Naval

Postgraduate School which creates false target radar im-

ages. A C language program, written by Professor Douglas

Fouts, was also available to use as a standard for compar-

ing the accuracy of results throughout the research. This

chapter discusses the basics of the false radar imaging al-

gorithm, use of the chip design and C program in the re-

search and gives an overview of the major steps required to

implement and test the algorithm using the SRC-6E.

B. FALSE TARGET RADAR IMAGING ALGORITHM

The algorithm works by splitting a false target image

into several range bins, as shown in Figure 1, where a ship

is split into four range bins. Each range bin represents a

portion of the vessel based on the distance from the radar

source. Greater resolution can be achieved by having a

greater number of range bins for a given false target. It

can be observed from the geometry that the radar-signal

travel distance is different for each range bin.

2

Figure 1. False Target Radar Imaging Algorithm Usage

Based on knowledge of a ship’s radar image, an opera-

tor can set phase rotation and gain constants for each

range bin. The algorithm begins with the interception and

sampling of an interrogating radar pulse. The sample phase

is then rotated by adding a rotation constant to it. Next,

the sine and cosine are calculated. The gain is then ap-

plied to the results by multiplying by a gain value. The

results of each range bin are then summed up to produce a

radar reflection signal at a given time. With proper use,

the ship can be made to appear in a false position, be of a

different type of target, or to appear to be traveling with

other ships.

C. FALSE-TARGET RADAR-IMAGING CHIP DESIGN

The false-target radar-imaging chip consists of a 6-

stage pipeline which performs all necessary functions to

create a false radar reflection for a single range bin.

Figure 2 shows the signal flow through the slightly simpli-

fied version as was implemented during the research.

Ship

Bin 4

Bin 3

Bin 2

Bin 1

Radar
Source

3

Figure 2. False Target Radar Image Chip Signal Flow

 /
17

/
17

Register 3

Register 1

Register 2

Adder 1

LUT
SIN COS

Register 4

Register 8Register 7

Shifter 2Shifter 1

Register 10Register 9

Adder 3Adder 2

Register 14Register 13

/17/17

17//17

Register 5

Register 6

Register
12

Register
11

Phase Inc
 /
 5 /5/5

Phase Sample

/5/5

/5

/5

/8/8

/8/8

 /
 4

/5

/4

Gain URB

URB

Gain /13/13

/13/13

Next Range
Bin Q

PSVin

ODVin

PSVout

ODVout

CLR17

CLR13

/
4

Previous
Range
Bin I

Control
Logic

CLR17

Previous
Range
Bin Q

Next Range
Bin I

4

The basic steps of the algorithm are performed as fol-

lows:

1. The phase sample enters into register 3.

2. The phase rotation value enters into register 1,

is then loaded into register 2, and is then added to the
phase sample at adder 1. The results are then loaded into
register 4.

3. The contents of register 4 enter the lookup table

(LUT) and Sine and Cosine results are calculated. The re-
mainder of the pipeline is split into two identical por-
tions for each data result. The following steps outline
the path for the Sine result.

4. The gain value enters at register 5, is then

loaded to register 6, and proceeds to shifter 1 where it
controls how the contents of register 7 are shifted before
they proceed to register 9. This accomplishes modulo-2
multiplication.

5. The result from a preceding range bin enters at
register 11 and is added to the contents of register 9 in
adder 2 before proceeding to register 13.

6. The contents of register 13 are now available as

output Q if this is the last range bin in the series or are
sent to register 11 of a following range bin.

The control logic block receives signals URB (use range

bin), PSVin (phase sample valid input), and ODVin (output

data valid input). These signals are used to create the

CLR13 (clear 13-bit register), CLR17 (clear 17-bit regis-

ter), PSVout (phase sample valid output), and ODVout (out-

put data valid output).

The internal design of the control logic is shown in

Figure 3. The CLR13 and CLR17 signals are used to clear

the register contents at the appropriate time in the pipe-

lines when they do not contain valid data. This occurs

during pipeline startup and shutdown. The PSVout signal is

present to show the DRFM signal is valid. The ODVout sig-

5

nal is present to show that outputs Q and I contain valid

data. The URB signal is present to allow the operator to

disable a range bin. Figure 4 shows the signal flow when

four range bins are connected together.

Figure 3. Internal Design of the Control Logic

D. FALSE-TARGET RADAR-IMAGING PROGRAM DESIGN

The false-target radar-imaging program was written in

the C language. It performs the same arithmetic calcula-

tions as the false radar imaging chip but uses nested loop

iterative structures instead of pipelines. While the chip

requires a separate pipeline for each range bin, the pro-

gram simply adds additional length to the appropriate ar-

rays, trading off memory utilization for computational

logic. Table 1 shows how the results of each of four range

bins with an input of N samples are placed into the two di-

mensional array created by the program. Each row of the

table is then summed up to produce the false target radar

signal results.

6

Figure 4. Signal Flow for Four Cascaded Range Bins

Bin 0 Bin 1 Bin 2 Bin 3
Sample 1
Results

0 0 0

Sample 2
Results

Sample 1
Results

0 0

Sample 3
Results

Sample 2
Results

Sample 1
Results

0

Sample 4
Results

Sample 3
Results

Sample 2
Results

Sample 1
Results

… … … …
Sample N
Results

Sample N-1
Results

Sample N-2
Results

Sample N-3
Results

0 Sample N
Results

Sample N-1
Results

Sample N-2
Results

0 0 Sample N
Results

Sample N-1
Results

0 0 0 Sample N
Results

Table 1. False-Target Radar-Imaging Program Ex-
ample Using Four Range Bins

Range
Bin 3

PSVin

Phase Sample

ODVin

OtherBinDataSIN OtherBinDataCOS

Q3 I3

Range
Bin 2

DRFM3

ODVout3

Q2 I2

PSVout3

Range
Bin 1

PSVout2

DRFM2

ODVout2

Q1 I1

Range
Bin 0

DRFM1

ODVout1

Q I

PSVout1

PSVout

DRFM

ODVout

7

The program was used as both a trusted source for re-

sults to test the research against as well as used in the

timing comparisons discussed in Chapter V. The full code

for the program can be viewed in Appendix A.

E. REMAINING CHAPTER OUTLINE
The following outlines the remaining chapters which

roughly follow the major steps that were taken throughout

the research:

• Chapter II discusses the SRC-6E architecture,
programming environment, and documentation.

• Chapter III discusses programming the chip design
using VHDL.

• Chapter IV discusses porting the VHDL code to
SRC-6E environment

• Chapter V presents the data collection methods
and analysis.

• Chapter VI provides conclusions and future work
recommendations.

• Appendix A contains the modified C program origi-
nally written by Professor Douglas Fouts which
was used a standard for output correctness and as
a source of timing data.

• Appendix B contains the final version of the VHDL
code that was tested before porting to the SRC-
6E.

• Appendix C contains the final version of the
files used on the SRC-6E, including sample input
and output.

• Appendix D contains all of the timing data col-
lected during the research.

8

THIS PAGE INTENTIONALLY LEFT BLANK

9

II. SRC-6E ARCHITECTURE AND SOFTWARE ENVIRONMENT

A. INTRODUCTION

This chapter provides a brief overview of the hard-

ware, software, and documentation, of the SRC-6E recon-

figurable computing system. Reconfigurable computing is

defined as “the capability of reprogramming hardware to

execute logic that is designed and optimized for a specific

user’s algorithms” [1].

B. SRC-6E HARDWARE OVERVIEW

The SRC-6E computer consists of two independent Linux

computers (labeled A and B) and a MAP board, (see Figure

5).

Figure 5. SRC-6E System Diagram (After Ref. 2.)

MAP, a registered trademark of SRC Computers, Inc., is the

name of the custom reconfigurable hardware. Each independ-

ent Linux computer contains a motherboard holding dual In-

Microprocessor
Side B

MAP
Chassis

Microprocessor
Side A

10

tel P3 Xeon 1-GHz processors, 1.5 gigabytes of memory, and

a SNAP interface card. The SNAP card is a custom interface

card which plugs into a motherboard DIMM memory slot and

provides connections to the MAP board which is located in

the MAP Chassis. A single MAP board consists of two inde-

pendent MAPs. A block diagram of a single MAP is shown in

Figure 6. A MAP consists of three Xilinx Virtex-II-series

XC2V6000 FPGAs and 24 megabytes of memory (labeled OBM on

Figure 6).

Figure 6. MAP Interface Block Diagram (From Ref. 2.)

One of the FPGAs is reserved for “control logic” while the

other two, available for user programs, are called “user

logic”. The OBM memory is split into six equal banks, la-

beled A through F, of 4 megabytes each. The user FPGAs are

connected to a fixed 100-MHz clock, which seems overly re-

strictive. According to Xilinx product specification

sheets, the Virtex-II-series FPGAs can ran at clock speeds

as low as 1 MHz and upwards of 400 MHz [3]. Programmer

11

control of the clock speed on the SRC-6E would make the

system more flexible. Each MAP also has a chain port which

can be used for direct I/O to the user logic, but was not

used during this research.

C. SOFTWARE ENVIRONMENT

1. Operating System

The operating system for the SRC-6E is Red Hat Linux,

which has been augmented with custom drivers and libraries

to support the MAP and SNAP hardware. The built-in graphi-

cal text editor in Linux is called GEdit. Programmers ex-

perienced with UNIX can use the standard line type text

editors such as VI if they choose. Both contain the mini-

mal functionality required of a text editor to write the

required files for the SRC-6E.

2. Programming Environment

The programming environment for the SRC-6E is called

Carte. Carte allows a user to write code in a high level

language, either C or Fortran, that directly targets the

user programmable FPGAs in the MAP. In addition, users can

write their own “macros” using the hardware definition lan-

guages Verilog and/or VHDL. At compile time, all user code

and macros are linked together into a single executable

file. Carte includes standard compilers for the Intel mi-

croprocessors as well as custom MAP compilers for both For-

tran and C. Synplify Pro software by Synplicity, Inc. is

used for FPGA place and routing. This program normally

runs under Windows version but is executed in the Linux en-

vironment using a Windows emulator called Wine.

Since Carte relies on the built-in Linux editors, the

SRC-6E programming environment does not have any of the

modern features a programmer expects from editors available

12

in products such as Microsoft’s Visual C++ or Borland’s J-

Builder. Lack of syntax and error checking in the program-

ming environment is a serious drawback when using this sys-

tem. Some error messagess are produced at compile time,

but they are cryptic at best, especially for someone not

used to the Linux environment. There are several file

types which must interact during the compile process, as

will be discussed in Chapter IV. The intricate details of

these files can be quite confusing and it is often diffi-

cult to identify which file contains the problem based on

the error messages given at compile time. Rudimentary

checking of these files within a custom editor would

greatly improve the entire programming process.

D. MAJOR DOCUMENTATION

The documents discussed here come with the SRC-6E to

aid in its programming.

1. SRC-6E C Programming Environment Guide

Driver code must be developed to create the interface

to the user logic. This document describes how to write

this code using the C language [4].

2. SRC-6E Fortran Programming Environment Guide

Similar to the C Programming Environment Guide, this

document describes how to write similar code using the For-

tran language [5].

3. SRC-6E MAP Hardware Guide

This document contains hardware implementation specif-

ics of the MAP which are well below the level required for

users to successfully program the SRC-6E [2].

4. SRC-6E MAP Macro Developers Guide

This document discusses general information on the use

of the Macro Data Sheet Library, including naming conven-

tions, interfaces, fanout and combinatorial delays [6].

13

5. Macro Data Sheet Library

The library contains data sheets for all macros devel-

oped by SRC for the SRC-6E. A list of all currently sup-

ported macros is available in a technical note, Ref. 7.

The macros can be used like regular function calls in the

chosen programming environment language (C or Fortran).

The macros include all basic math and logic functions cur-

rently supported by the environment. There are also sev-

eral support macros which include, among others, various

macros for combining and splitting data structures.

This chapter provided an overview of the hardware,

software and documentation of the SRC-6E computer. The

next chapter will discuss development and testing of the

VHDL code used in the research.

14

THIS PAGE INTENTIONALLY LEFT BLANK

15

III. DEVELOPMENT AND TESTING IN VHDL WITH ALDEC
ACTIVE-HDL 5.2

A. INTRODUCTION

This chapter describes the development of the false-

target radar-imaging macro in VHDL before it was ported to

the SRC-6E environment. This portion of the research was

performed before receipt of the SRC-6E system or any train-

ing on the system was received. As a result, the macro

that was originally developed contained the correct func-

tionality but was not optimized for the SRC-6E environment.

Development of the macro was performed in a Windows XP en-

vironment using Aldec Active-HDL 5.2 software.

B. FUNCTIONAL BLOCKS

The False-Target Radar-Imaging chip was implemented

directly into VHDL by direct programming of the code. Each

component of the design was created using separate func-

tional blocks of VHDL code. Several of the basic building

blocks of code were taken from Ref. 8 and modified as nec-

essary. The code for this section can be viewed in Appen-

dix A.

1. D-Type Flip Flops

 The six pipeline stages required registers, which were

implemented as D-type Flip Flops. Single-bit registers

were designed that are loaded on the rising clock edge and

have both enable and clear input signals. The 5-, 8-, 13-,

and 17-bit registers required for the designed were created

by instancing multiple copies of the single-bit registers.

2. Adders

 A single-bit full adder was coded using the design of

Ref. 8. The 5- and 16-bit adders required for the design

were created by instancing multiple copies of the single-

16

bit adder. A simple ripple carry design was used at this

point in the research. Chapter IV will discuss why this

was later modified with carry look-ahead circuitry. For

the 16-bit adder, a special final single-bit stage was de-

veloped to propagate an overflow signal if generated by

previous range bin stages.

3. Look-Up Table (LUT)

The LUT was originally developed starting with a de-

sign from Ref. 7, but was later heavily modified. The LUT

takes a single 5-bit input and performs simultaneous look-

ups using data from both sine and cosine tables. The out-

put of the LUT is two 8-bit values, one each for sine and

cosine. The initial design had the correct functionality

but was later modified after porting to the SRC-6E. The

required modifications will be discussed in Chapter IV.

4. Control Logic Block (CLB)

The CLB was created by instancing several of the flip

flops with some basic logic functions to create the design

shown in Figure 3.

5. Gain Shifter

The shifter takes a 4-bit control input and shifts the

8 bits of input data into a 13-bit output. The shifter is

designed to provide a maximum gain multiplication of 1024.

However, applying this to an 8-bit input results in an 18-

bit output with more dynamic range than is necessary [9].

Therefore, the least significant 5 bits are truncated to

create a 13-bit output. Table 2 shows how the control bits

affect the shift and the resulting resolution of the out-

put.

17

Table 2. Gain Shifter Operational Data (After
Ref. 9.)

Because the input data could be negative, it was also

necessary to preserve the sign bit by copying it as neces-

sary to the upper bits in the output. The original version

of this code used a case statement and some simple math to

determine which bits were shifted where. The version ran

correctly in the Aldec simulation software, but required

Control

Code

Multiplication

Factor

Size of

Shift

Sin/Cosine Wave

Resolution

0 1 0 3

1 2 1 4

2 4 2 5

3 8 3 6

4 8 3 6

5 16 4 7

6 32 5 8

7 64 6 8

8 16 4 7

9 32 5 8

10 64 6 8

11 128 7 8

12 128 7 8

13 256 8 8

14 512 9 8

15 1024 10 8

18

modification when porting to the hardware, which will be

discussed further in Chapter IV.

6. One Range Bin

A single range bin was created by instancing the above

parts and creating an appropriate interface. The code was

tested by comparing the output to the C program run on the

same data set. After some minor error correction to the

lookup table entries, the code was incorrectly deemed to be

correct. Additional testing later conducted with two range

bins yielded additional errors in the CLB that were not

found in the single range bin tests.

7. Two Range Bins

A system with two range bins was then created by in-

stancing two of the single range bins previously tested.

Tests run on the same data sets with the C program yielded

errors. As previously mentioned, problems were eventually

discovered with the timing within the CLB. These problems

were not identified while testing the single-range-bin

since the CLB primarily creates signals to handle the in-

teraction between multiple range bins. After correction of

the errors, the output was deemed to be correct.

8. Four Range Bins

Finally, a system with four range bins was created by

instancing four of the single range bins with an appropri-

ate interface. The signal flow of four range bins is shown

in Figure 4. The code worked properly the first time. It

was this version of the code that was initially ported to

the SRC-6E.

This chapter discussed VHDL code development. The

next chapter will discuss porting the code to the SRC-6E.

19

IV. PORTING THE VHDL CODE TO THE SRC-6E

A. INTRODUCTION

This chapter discusses the porting of the VHDL code to

the SRC-6E and the required support files. Also discussed

are changes that were required to the original code to make

it compatible with the SRC-6E.

B. THE SRC-6E FILE TYPES

The process of writing code to target the user logic

requires several file types. To import a user macro from

either VHDL or Verilog, five files must be created: .info,

.box, .mc, .c, and the makefile. Using only the last

three, one can write code that targets the user logic with-

out using a user defined macro. Examples of these file

types can be viewed in Appendix C, which contains the final

versions of all the files used.

1. .info

This file type is required whenever a user macro is

used. It contains the following information:

• Macro name

• Macro type – stateful, external, and pipelined

• Latency – a number stating how many clock cycles
before valid output is generated by the macro.

• List of inputs and outputs

The file type “.info” is a naming convention and is not re-

quired. Any filename can be used as long as it matches

that listed in the makefile.

2. .box

This is another file type that is required only when

using a user-defined macro. It is a Verilog style descrip-

tion of the input and output variables of the macro. The

Verilog description is necessary for both VHDL and Verilog

20

macros. As with the .info type, the .box name is only by

convention.

3. .mc

This file type is C code written to target the user

logic. All code in this file will be implemented in hard-

ware along with the user macro. Using this file type, it

is possible to write code for the hardware using only the

high-level language C without using any user-defined macros

defined with a hardware description language.

4. .c

This file type is regular C code which provides the

interface between the operating system and the hardware

code defined in the .mc file. Code implemented in this

file is executed on the Xeon processors.

5. makefile

This file is used by the command “make” when all the

files are compiled and linked. It contains all of the file

names and paths used, as well as the desired final executa-

ble name. Compiler flags and options can also be stated in

this file.

6. .vhd

This file type is for VHDL macro files. In general,

it is safest to merge multiple files into one. However, it

is possible to build with separate files as long as they

are listed in the proper order in the makefile. The com-

piler appears to be single pass so the files must be in the

order they are used, with the lowest order file listed

first.

7. Other Types

Two other file types can be used by users programming

the user logic: .f, which is a Fortran file, and .v, which

21

is a Verilog file. These file types were not used during

this research.

C. CODE DEVELOPMENT

Porting of the macro code began with creation of the

required support files previously mentioned. Although the

files are relatively small, creating them was non-trivial

as there were no previous examples using VHDL macros. The

process was a painful series of trial and error, particu-

larly with the required contents of the .info and .box

files. The code went through ten major revisions, with

three major versions, over a period of about six months.

1. Version 1.0

The single-range-bin VHDL code was imported to the

SRC-6E and all code modules were merged into a single .vhd

file. The required support files were first generated us-

ing some unrelated examples in the C Programming Guide and

a lot of guessing. The SRC data packing macros called com-

bine and split were used to pack and unpack the data in the

.mc file into two memory banks for input and one for out-

put. Much trial and error was attempted on this version,

but it would never make to create an executable.

2. Version 1.1

 After discussion with SRC technical support, some new

changes were tested. The .info and .box file format ques-

tions were mostly resolved in this version. The order of

declarations within the .vhd file was changed to make the

main macro appear as the top level to the compiler. The

gain shifter code was modified to make it synthesizable.

This version compiled to executable but caused unexplain-

able segmentation faults when run.

22

3. Version 1.2

In order to isolate the faults in this version, empty

macros were made in VHDL consisting of only the interface

information. After determining the problem was in the sup-

port files, the original VHDL macro was restored. Problems

were isolated with misuse of the SRC packing macros and

various other syntax errors. After much further work and

testing, this version created a working executable which

produced the proper output expected for a single range bin

on a 32 sample size input.

4. Version 2.0

Encouraged by the success, a new version was created

which attempted to implement four range bins. The SRC

packing macros were not used in this implementation because

they could not combine vectors shorter than 8 bits without

wasting the remaining space. The VHDL macro uses 1-, 4-,

5-, and 17-bit signals. These odd sizes could not be effi-

ciently combined with the pre-built macros and all packing

of data was implemented in the C program, combining all in-

put into two 64-bit words using a series of shifting and

logic with masks. The VHDL macro interface was also modi-

fied to support the changes. This version created a work-

ing executable; however, some of the output data was incor-

rect.

5. Version 2.1

In order to help identify where the problems were, the

output format was modified in the .c program to display the

outputs of all four range bins. After several changes, the

code began hanging when executed during the call to the MAP

function. On recommendation of the SRC technicians, the

method in which the array sizes were calculated was modi-

fied to ensure the arrays were properly padded and aligned

23

on 32-bit memory boundaries as required. The changes re-

solved the hanging problem but the output data was still

incorrect.

6. Version 2.2

At this point, the researchers were stumped and

searching for any possible reasons why the output data was

wrong. The majority of the output was correct. The code

generated several correct values followed by a single in-

correct value. The remaining output was correct up until a

certain point before the end of the data where it all went

bad. Exploring all possibilities, it was discovered that

the macro was failing the timing requirements to run within

the 100-MHz clock. No errors or warnings were produced by

the SRC environment to state this. The timing results are

created along with many other files during the make proc-

ess. For example, running the make process on Version 3.0

of this research generates 54 files split over 3 directo-

ries. Locating useful debugging information within these

many files can be a chore. How the timing failures were

resolved will be discussed later, but they ended up not be-

ing the problem.

7. Version 2.3

In order to troubleshoot the corrupt data problem, the

16-bit adder code was removed, which allowed the direct

output of each of the four range bins to appear in the out-

put. The data generated by each of the range bins showed

the same general format of being mostly correct but all go-

ing bad after a certain point. Much attention was turned

to the control logic at this point to see if it was the

culprit but no errors could be found. To help isolate the

problem, the current version of the VHDL code was exported

back to the Windows environment and it produced the correct

24

output. At this point, the SRC-6E was incorrectly sus-

pected to have either a software or hardware bug, possibly

in the memory transfers. The software environment has a

useful debugging mode called MAPTRACE which can be used to

view the data before and after it is sent to the MAP. Ob-

servations of the file generated by MAPTRACE showed that

the data was being passed to and received by the MAP cor-

rectly.

8. Version 2.4

This version still had the 16-bit adder removed. Mi-

nor changes to the LUT and gain shifter were implemented in

this version to ensure that they were fully synthesizable

but they did not affect the output. Troubleshooting with

this version did not solve the problem but helped narrow

the focus to the interface. Upon close examination of the

interfaces it was noted that there were differences between

the Windows version and the SRC version as to the way the

data was packed in the SRC version. After exporting the

packed data to the Windows version, the code produced the

same identical faulty output as the SRC version. Since the

two versions both produced the same identical output, it

was determined that the problem had to be with the inter-

face and input data.

9. Version 2.5

After closer inspection of the interface and the

method used to pass in data, it was observed that the gain

and phase shift signals were not being applied properly.

This was an operational problem as the macro code was cor-

rect. Modifying how the signals were applied fixed the

problem with the faulty outputs. At this point, the code

was producing correct output and data collection was

started on various sized data sets. While collecting the

25

data, it was noted that a segmentation fault would occur

above certain array sizes.

10. Version 3.0

After discussion with SRC technical support, the code

was modified to use a dynamic array allocation method which

will be discussed later. The memory usage changes cor-

rected the problem. All extra unnecessary output was also

removed in this version. This final version was used to

collect the data and is shown in Appendix C.

D. SYNTHESIZABLITY

Synthesizability is a style of hardware description

language programming which allows the available layout

tools to properly convert the code for hardware implementa-

tion on an FPGA. During the design of the code, the Aldec

software was only used to simulate the VHDL code. There-

fore, it only tested the code for functionality and did not

consider if the code could actually be implemented in hard-

ware. Two of the original code blocks, the gain shifter

and LUT, required modification once ported to the SRC-6E so

the layout tool could define them in hardware. The root

cause of this was inexperience with both the VHDL language

and the concept of synthesizability.

1. Gain Shifter Changes

The gain shifter went through two changes. Initially,

the code was defined such that some of the variable bit

widths were defined at run-time. This worked fine during

emulation but could not be implemented in hardware. To

make it work the code was written with a “case” statement

that outlined specifically every possibility at runtime.

Implementing this in hardware requires redundant logic and

decoders to choose which portions to use during run time.

Later, the code was streamlined again to remove an unneces-

26

sary function call which provided some savings in the final

hardware definition. The function call, which converted

data types from bit_vector to integer, also had an unneces-

sary variable length defined at run-time. When removing

the variability, it was determined that the entire function

was not required and the “case” statement was modified to

incorporate the function’s results directly.

2. LUT Changes

The same function call that was made in the Gain

Shifter was also used in the LUT. Although this code

worked properly, even with the variable length at runtime,

the function call was unnecessary and similar methods were

used to remove it from the code entirely. The removal re-

sulted in a small space savings on the FPGA.

E. TIMING FAILURES

While debugging the code to determine the cause of

some faulty output on the SRC-6E, it was noted that the

macro was failing timing requirements for implementation

with the 100-MHz clock. The worst path through the logic

was reported to be in the portion of the pipeline that con-

tained the 16-bit adder and that it exceeded the required

time by 4.310 ns. The cause of the poor timing was that

the 16-bit adder was initially implemented with a simple

design using ripple carry propagation, shown in Figure 7a.

27

Figure 7. 16-bit Adder Versions

Several alternative designs were tested using carry

look-ahead (CLAH) circuits to bring the delay time within

that required for the 100-MHz clock. Of note, these modi-

fications did not affect the output in any way and were not

the solution to the problem being investigated at the time.

The problem being investigated involved passing in improper

input. Despite the fact that the timing was failing, the

circuits were still working properly, demonstrating that

there was possibly some error within the timing calcula-

tions or more likely that there was additional padding en-

gineered within the design.

1. Single 8-bit CLAH

A single 8-bit CLAH circuit was designed and placed in

the center of the carry chain, which effectively splits the

chain in half as shown in Figure 7b. This improved the

CLAH8

+ + + + + + + + + + + + + + + +

Carry
In CLAH4 CLAH4

d. Final Implemented Version

CLAH4 CLAH4

+ + + + + + + + + + + + + + + +

Carry
In

CLAH4

c. Triple 4-bit CLAH

CLAH8

+ + + + + + + + + + + + + + + +

Carry
In

b. Single 8-bit CLAH

+ + + + + + + + + + + + + + + +

Carry
In

a. Original Ripple Carry Version

28

time by almost 3 ns, but the circuit still failed timing by

1.615 ns.

2. Three 4-bit CLAH

A 4-bit CLAH circuit was designed and placed at three

points in the carry chain. The circuit chained groups of

four carries to each other, as shown in Figure 7c. This

design slightly improved the timing but was still inade-

quate.

3. Two 4-bit and one 8-bit CLAH

Finally, combinations of 4-bit and 8-bit CLAH circuits

were used, which effectively split the 16 carries into four

pieces, as shown in Figure 7d. Initially, this design only

improved the timing slightly which remained about 1.2 ns

over what was required. Coincidentally, at the time of

this testing, an upgrade to the Carte software was re-

leased, version 1.5. Remaking the same design after the

upgrade created a result that was 0.401 ns under time. The

reason why the new version of the software caused the tim-

ing improvement remains a mystery. No further modifica-

tions were made after this point.

F. MEMORY ALLOCATION CHANGES

Data passed into the MAP must be properly declared and

aligned. There are two methods to accomplish this. The

first method attempted used the SRC function “addr32.”

This method uses fixed sized arrays declared at compile

time. The addr32 method worked fine up to fixed size ar-

rays of 166,581 but caused segmentation faults when exceed-

ing this value. A trial and error approach was used to de-

termine the exact value at which the segmentation faults

began. The number 166,582 has no apparent meaning when re-

lated to array sizes and is a very unusual number to fail

on. Communication with SRC Computers, Inc. could not re-

29

solve why this occurs. However, using the second available

method with the “cache_alligned_allocate” function allowed

the array sizes to be declared correctly. This method uses

run-time allocation to declare the proper array sizes and

was tested successfully up to array sizes of 500,000 64-bit

elements. Based on 4 megabytes of memory per bank, the

theoretical limit is 524,288 64-bit values, but this upper

limit was not tested.

This chapter discussed the necessary changes required

to port the VHDL code to the SRC-6E environment. The next

chapter will discuss benchmarking the SRC-6E, including

data collection and analysis.

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

V. DATA COLLECTION AND TIMING ANALYSIS

A. INTRODUCTION

This chapter discusses the benchmarks and methods used

for collection of data and its analysis during the re-

search.

B. BENCHMARK TEST PLATFORMS

1. C Program Executed on a Windows-based Machine

The C program shown in Appendix A was compiled and

executed on a 3-GHz Pentium 4 processor system with 2 giga-

bytes of RAM running the Windows XP Professional operating

system. The primary reason for this benchmark was to draw

a comparison for cost-effectiveness between the high-cost

special purpose SRC-6E system and a modern, off-the-shelf,

general purpose computer.

2. C Program Executed on the SRC-6E

The same C program was compiled and run directly on

the SRC-6E without using any of the custom hardware.

Therefore, the data collected is based on the Linux operat-

ing system running on a 1-GHz Xeon 3 processor with 1.5

gigabytes of RAM. Although the system contains dual proc-

essors, only one thread is created while running the code

and therefore it is believed that only one processor is

utilized during the test. The primary reason for this

benchmark was to test if the algorithm itself is suitable

for implementation on the user-logic.

3. VHDL Code on the SRC-6E MAP

The VHDL user macro and support files (shown in Appen-

dix C) were built and executed on the SRC-6E MAP. Two tim-

ing data results were collected from each of the runs, the

total run time for the entire execution and the time of

32

execution on the MAP only. The two timing data results

compare overhead time to actual execution on the MAP.

C. TIMING DATA COLLECTION METHOD

The input data sets were composed to represent a

stream of intercepted radar samples. Each data item con-

sists of two hexadecimal characters representing a five-bit

intercepted radar sample. The 32-sample-size data set is

shown in Appendix C, which represents the decimal numbers 0

to 31 in order. All other-sized sample sets were created

by duplicating and repeating the same 32 samples in order.

By doubling each previous sample set size the following set

sizes were created: 32, 64, 128, 256, 512, 1,024, 2,048,

4,096, 8,192, 16,284, 32,786, 65,536, 131,072, and 262,144.

The final set size of 500,000 was chosen as a convenient,

large value that was close to the upper array size restric-

tion allowed by the four megabytes of memory per bank on

the SRC-6E.

Data from all test platforms were collected in order

of increasing input set size. All raw data used in the

timing analysis can be observed in Appendix D. The timing

data was collected by running five consecutive runs of each

input data set on each of the three benchmark platforms.

The data for the Windows XP system were collected after a

fresh reboot with all unnecessary programs closed. It

should be noted that observation of the system usage during

execution of the code showed that the processor and memory

were not fully utilized. The reasons why the processor did

not appear to be fully used and the methods Windows uses to

measure performance are unknown. The SRC-6E system data

were collected by running the executables on side A when no

other users were using the system.

33

D. TIMING DATA ANALYSIS

1. Methods

The timing data are displayed in two types of graphs.

The first is the average total time each test platform

takes for each data set. The average is taken of the five

data points for each input set size. The second is the av-

erage time per sample for each input set. First, the aver-

age is taken over the five data points and then it is di-

vided by the input set size. All graphs are connected with

straight line approximations between data points.

2. Results

Figure 8 shows the average total time vs. input set

size for each of the four timing result sets.

Average Total Time

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
28

4
32

78
6

65
53

6

13
10

72

26
21

44

50
00

00

Input Set Size

Ti
m

e
(S

ec
on

ds
)

SRC Macro MAP Call SRC Macro Total
Windows XP C Program SRC C Program

Figure 8. Comparison of Average Total Time

Figure 9 shows the same data displayed on a semi-log scale

for better clarity in the lower sample set size region.

All four curves are fairly constant up to the 16,284 sample

34

size. This result shows that, for small data set sizes,

the overhead times inherent in the systems are much greater

than the calculation times. We consider overhead to be all

the data file read/write operations and memory accesses re-

quired to prepare the data for calculations. The SRC Macro

MAP Call curve clearly shows the calculation time is insig-

nificant compared to the total processing time.

Average Total Time (Log Scale)

0.01

0.1

1

10

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
28

4
32

78
6

65
53

6

13
10

72

26
21

44

50
00

00

Input Set Size

Ti
m

e
(S

ec
on

ds
)

SRC Macro MAP Call SRC Macro Total
Windows XP C Program SRC C Program

Figure 9. Semi-Log Comparison of Average Total Time

The SRC Macro MAP Call curve also shows the MAP execu-

tion time is extremely fast, even for very large data set

sizes. However, the SRC Macro Total curve shows the total

execution time for the VHDL macro takes considerably

longer. The extra time represents delays in the system to

prepare and transfer the data in and out of the MAP which

cause the SRC execution time to be longer for all input set

sizes, initially by an order of magnitude.

35

As the input set size is increased, we see the curves begin

to converge. Figure 10 shows a comparison of the average

time per sample. Figure 11 shows the same data on a semi-

log scale.

Average Time per Sample

0.00

0.01

0.02

0.03

0.04

0.05

0.06

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
28

4
32

78
6

65
53

6

13
10

72

26
21

44

50
00

00

Input Set Size

Ti
m

e
(S

ec
on

ds
)

SRC Macro MAP Call SRC Macro Total
Windows XP C Program SRC C Program

Figure 10. Comparison of Average Time per Sample

The overhead in the SRC Macro clearly dominates the graphs

for smaller sample set sizes. However, for larger sample

set sizes, the overhead time is amortized over the total

time to be nearly insignificant. Figure 12 shows only the

upper sample set size data to magnify the differences. The

SRC Macro Total time is approaching the other curves and

presumably would eventually meet them if the sample set

size could be further increased. However, this is not pos-

sible with the current macro design due to the memory de-

sign of the SRC-6E hardware.

36

Average Time per Sample (Log Scale)

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
28

4
32

78
6

65
53

6

13
10

72

26
21

44

50
00

00

Input Set Size

Ti
m

e
(S

ec
on

ds
)

SRC Macro MAP Call SRC Macro Total
Windows XP C Program SRC C Program

Figure 11. Semi-Log Comparison of Average Time per
Sample

Average Time per Sample (Large Sample Sizes Only)

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

16284 32786 65536 131072 262144 500000

Number of Samples

Ti
m

e
(S

ec
on

ds
)

SRC Macro MAP Call SRC Macro Total
Windows XP C Program SRC C Program

Figure 12. Comparison of Average Time per Sample

37

3. Conclusions

The design of the VHDL macro running on the SRC-6E

suffers from excessive overhead which makes it less effi-

cient than the C program which performs the same calcula-

tions. Due to the memory size available to the user logic

on the SRC-6E, the sample set size cannot be increased

large enough to make the VHDL macro run efficiently. The

calculation time on the SRC user logic is extremely fast

but this is irrelevant if a method cannot be developed to

reduce the overhead.

The C program running on Windows is faster at low sam-

ple set sizes due to the raw processing power of the faster

clocked Pentium 4. However, the slower Linux based SRC

system catches up for larger sample set sizes and even ap-

pears to surpass the Pentium at the 500,000 sample set

size. It appears that the Linux operating system is more

efficient than Windows for this particular algorithm on the

SRC-6E. However, the much greater cost of the SRC-6E does

not make it a cost-effective solution for this algorithm.

This chapter discussed benchmarking the SRC-6E, in-

cluding collection of data and analysis, and drew conclu-

sions on the results. The next chapter draws conclusions

on the SRC-6E, including difficulty of use and appropriate-

ness for the chosen algorithm. Recommendations for future

work are also presented.

38

THIS PAGE INTENTIONALLY LEFT BLANK

39

VI. CONCLUSIONS

A. INTRODUCTION

This chapter draws conclusions on the difficulty of

use of the SRC-6E, appropriateness of the chosen algorithm

for application on the SRC-6E, and gives recommendations

for future work.

B. DIFFICULTY OF USE

1. Necessary Skills

Programming the SRC-6E to use user-defined macros re-

quires knowledge of high-level programming languages, hard-

ware description languages, hardware component design, and

synthesizability. Relatively few people possess all of

these skills to use the system effectively without first

receiving significant training. However, programming the

system using only high-level languages of C or Fortran is

possible which widens the potential user base to many more

people. Much more research needs to be performed to deter-

mine if either method produces more effective solutions.

2. Experience Level

The SRC-6E has a relatively steep learning curve.

There are a few examples in the documentation and a very

small body of work in place using the system. The errors

generated by the system during development are not intui-

tive and cannot be solved without previous experience with

solving the same errors. The SRC support staff are very

helpful in solving specific code problems but are not

forthcoming in the reasons or methods used to resolve them.

There are no development tools in place to assist novice

users in programming the system. More research is required

to see how much experience on the system is required to

prevent and or recognize these types of errors quickly.

40

3. Development Time

The development time to implement solutions on this

system appears to be high, primarily due to the steep

learning curve and lack of development tools. This re-

search represents approximately one year of part-time work

by a single, previously inexperienced person, of which

about half the time was working with the SRC-6E. It should

be noted that many delays were present in the research that

would not occur on a second attempt at testing the system,

for example, scheduling user training and initial delivery

of the system. More research must be performed to further

quantify the development time and see how it improves once

a group of experienced repeat users is grown. No research

has yet been performed with large projects, employing mul-

tiple programmers, to see if the total project time can be

reduced effectively.

C. APPROPRIATENESS OF THIS ALGORITHM

The chosen implementation of the false target radar

imaging algorithm appears to be one that would benefit from

a reconfigurable computer because it is pipelined and sup-

ports parallel processing. However, implementation of the

design with four or less range bins has been shown to lack

the necessary parallelism required to fully utilize the

hardware and make it effective. Without increases in the

memory size allocated for the user logic, implementation of

four range bins on the SRC-6E is not an effective solution

in terms of development time, processing time, or cost-

effectiveness.

D. RECOMMENDATIONS FOR FUTURE WORK

1. Develop Implementation of More Range Bins.

The algorithm is not parallel enough with four or less

range bins to make implementing it on the SRC-6E architec-

41

ture an effective solution. Expanding the interface to in-

stantiate and deliver data to more range bins at once may

show a more drastic increase in performance versus other

computing methods. Rough estimates of FPGA usage show that

16 range bins should fit in the user logic area. However,

rebuilding the interface to support this could be a chal-

lenge with the limited bandwidth provided by six 64-bit ar-

rays.

2. Develop a More User-Friendly Programming Environ-
ment.

As previously discussed, the SRC-6E lacks a custom

code editing environment with modern features such as real

time syntax checking. Automated generation of some of the

support files could also be implemented. Project wizards

could be created that ask a few questions and then create

the skeletons of the support files for the project.

Changes to one file that affect another could be automati-

cally corrected or at a minimum generate warnings.

3. Testing Other Applications.

The knowledge base of what types of applications do or

do not work efficiently on this system is very small. Many

more algorithms need to be tested on the system. Program-

ming the same algorithm with both the high level language

method and the user macro method would also provide infor-

mation on which produces better results for different types

of algorithms. Cost and timing comparison to modern, read-

ily available computers should continue to be made.

42

THIS PAGE INTENTIONALLY LEFT BLANK

43

APPENDIX A

This appendix contains the C code written by Professor

Douglas Fouts that was used as a standard for output cor-

rectness and as a source of timing data. Slight modifica-

tions were made to provide for timing result output and in-

creased sample sizes. The version presented was used on

both the SRC-6E and the Windows XP platforms for timing

analysis with no modifications.

A. CHIP2_SIM.C

/* Simulate the DIS-512 chip. */

/* Compile Command */

/* cc Chip2_Sim.c -lm */

/* Range bin phase increment data must be in the file phzinc.txt. */

/* Range bin amplitude scaling data must be in the file ampscal.txt. */

/* Pulse phase samples must be in the file phzsamp.txt. */

/* Output results are put into the file IandQout.txt */

/* Global Included Files */

#include <stdio.h>

#include <math.h>

#include <time.h>

/* Global Defines */

#define rangebins 4 /* Number of range bins. */

#define phzsamps 500000 /* Maximum number of phase samples. */

/* Global Data Structures */

int phzincdat[rangebins], /* Stores phase increments for each range
bin. */

 ampscaldat[rangebins], /* Stores amplitude scaling factors for
each range bin. */

 Ipartres[phzsamps + rangebins][rangebins], /* Stores partial
results for each phase sample */

 Qpartres[phzsamps + rangebins][rangebins], /* in each
range bin. */

 sintab[32], costab[32], /* Sin and Cos lookup tables. */

 numofsamps; /* Used to count number of samples read in from
file phzsamp.txt. */

44

/* Read in phase increment values for each range bin, */

/* and store the results in the array phzincdat. */

rdphzinc()

{

 /* Local Variables */

 FILE *filepnt;

 int rbcnt;

 /* Open the input file phzinc.txt. */

 if ((filepnt = fopen("phzinc.txt", "r")) == NULL)

 fprintf(stderr, "\n\nTERMINAL FAULT: File phzinc.txt not
found.\n\n");

 /* For each range bin. */

 for (rbcnt = 0; rbcnt < rangebins; rbcnt++)

 {

 fscanf(filepnt, "%x", &phzincdat[rbcnt]); /* Read in phase
increment value. */

 } /* end of for loop */

 /* Close input file. */

 fclose(filepnt);

} /* End of function rdphzinc. */

/* Read in amplitude scaling values for each range bin, */

/* and store result in array ampscaldata. */

rdampscal()

{

 /* Local Variables */

 FILE *filepnt;

 int rbcnt, inptampdat, tstampdat;

 /* Open the input file ampscal.txt. */

 if ((filepnt = fopen("ampscal.txt", "r")) == NULL)

 fprintf(stderr, "\n\nTERMINAL FAULT: File ampscal.txt not
found.\n\n");

 /* Read in amplitude scaling values for each range bin. */

 for (rbcnt = 0; rbcnt < rangebins; rbcnt++)

 {

 fscanf(filepnt, "%x", &inptampdat);

 ampscaldat[rbcnt] = 0x00000001 & inptampdat;

45

 tstampdat = 0x00000001 & (inptampdat >> 1);

 if (tstampdat == 1)

 ampscaldat[rbcnt] = ampscaldat[rbcnt] + 2;

 tstampdat = 0x00000001 & (inptampdat >> 2);

 if (tstampdat == 1)

 ampscaldat[rbcnt] = ampscaldat[rbcnt] + 3;

 tstampdat = 0x00000001 & (inptampdat >> 3);

 if (tstampdat == 1)

 ampscaldat[rbcnt] = ampscaldat[rbcnt] + 4;

 }

 /* Close input file. */

 fclose(filepnt);

} /* End of function rdampscal. */

/* Initialize the global storage arrays. */

initarrays()

{

 /* Local Variables */

 int sampnum, rbnum;

 /* Initialize the partial result array. */

 for (sampnum = 0; sampnum < phzsamps; sampnum++)

 for (rbnum = 0; rbnum < rangebins; rbnum++)

 {

 Ipartres[sampnum + rbnum][rbnum] = 0;

 Qpartres[sampnum + rbnum][rbnum] = 0;

 }

 /* Initialize the sin table. */

 sintab[0] = 0x00000000;

 sintab[1] = 0x00000019;

 sintab[2] = 0x00000031;

 sintab[3] = 0x00000047;

 sintab[4] = 0x0000005A;

 sintab[5] = 0x0000006A;

 sintab[6] = 0x00000075;

 sintab[7] = 0x0000007D;

 sintab[8] = 0x0000007F;

46

 sintab[9] = 0x0000007D;

 sintab[10] = 0x00000075;

 sintab[11] = 0x0000006A;

 sintab[12] = 0x0000005A;

 sintab[13] = 0x00000047;

 sintab[14] = 0x00000031;

 sintab[15] = 0x00000019;

 sintab[16] = 0x00000000;

 sintab[17] = 0xFFFFFFE7;

 sintab[18] = 0xFFFFFFCF;

 sintab[19] = 0xFFFFFFB9;

 sintab[20] = 0xFFFFFFA6;

 sintab[21] = 0xFFFFFF96;

 sintab[22] = 0xFFFFFF8B;

 sintab[23] = 0xFFFFFF83;

 sintab[24] = 0xFFFFFF81;

 sintab[25] = 0xFFFFFF83;

 sintab[26] = 0xFFFFFF8B;

 sintab[27] = 0xFFFFFF96;

 sintab[28] = 0xFFFFFFA6;

 sintab[29] = 0xFFFFFFB9;

 sintab[30] = 0xFFFFFFCF;

 sintab[31] = 0xFFFFFFE7;

 /* Initialize the cos table. */

 costab[0] = 0x0000007F;

 costab[1] = 0x0000007D;

 costab[2] = 0x00000075;

 costab[3] = 0x0000006A;

 costab[4] = 0x0000005A;

 costab[5] = 0x00000047;

 costab[6] = 0x00000031;

 costab[7] = 0x00000019;

 costab[8] = 0x00000000;

 costab[9] = 0xFFFFFFE7;

 costab[10] = 0xFFFFFFCF;

 costab[11] = 0xFFFFFFB9;

 costab[12] = 0xFFFFFFA6;

47

 costab[13] = 0xFFFFFF96;

 costab[14] = 0xFFFFFF8B;

 costab[15] = 0xFFFFFF83;

 costab[16] = 0xFFFFFF81;

 costab[17] = 0xFFFFFF83;

 costab[18] = 0xFFFFFF8B;

 costab[19] = 0xFFFFFF96;

 costab[20] = 0xFFFFFFA6;

 costab[21] = 0xFFFFFFB9;

 costab[22] = 0xFFFFFFCF;

 costab[23] = 0xFFFFFFE7;

 costab[24] = 0x00000000;

 costab[25] = 0x00000019;

 costab[26] = 0x00000031;

 costab[27] = 0x00000047;

 costab[28] = 0x0000005A;

 costab[29] = 0x0000006A;

 costab[30] = 0x00000075;

 costab[31] = 0x0000007D;

} /* End of function initarrays. */

/* Read in pulse phase samples and calculate partial */

/* results for each range bin and store result in */

/* the arrays Ipartres and Qpartres. */

rdphzsamp()

{

 /* Local Variables */

 FILE *filepnt;

 int phzdat, phzaddout, ILUTOut, QLUTOut, IGainOut, QGainOut, rbcnt;

 /* Open the input file phzsamp.txt. */

 if ((filepnt = fopen("phzsamp.txt", "r")) == NULL)

 fprintf(stderr, "\n\nTERMINAL FAULT: File phzsamp.txt not
found.\n\n");

 /* Process each phase sample in the file phzsamp.txt. */

 numofsamps = 0;

 while (fscanf(filepnt, "%x", &phzdat) != EOF)

 {

48

 /* Process the new phase sample in each range bin and store the
result. */

 for (rbcnt = 0; rbcnt < rangebins; rbcnt++)

 {

 /* Increment the phase. */

 phzaddout = phzdat + phzincdat[rbcnt];

 phzaddout = phzaddout & 0x0000001F;

 /* Calculate I for each range bin and store the result. */

 ILUTOut = costab[phzaddout];

 IGainOut = ILUTOut << ampscaldat[rbcnt];

 if (IGainOut >= 0)

 IGainOut = IGainOut >> 5;

 else

 IGainOut = (IGainOut >> 5) | 0xFFFFE000;

 IGainOut = IGainOut & 0x0000FFFF;

 Ipartres[numofsamps + rbcnt][rbcnt] = IGainOut;

 /* Calculate Q for each range bin and store the result. */

 QLUTOut = sintab[phzaddout];

 QGainOut = QLUTOut << ampscaldat[rbcnt];

 if (QGainOut >= 0)

 QGainOut = QGainOut >> 5;

 else

 QGainOut = (QGainOut >> 5) | 0xFFFFE000;

 QGainOut = QGainOut & 0x0000FFFF;

 Qpartres[numofsamps + rbcnt][rbcnt] = QGainOut;

 }

 /* Increment the number of phase samples counter. */

 numofsamps++;

 } /* End of outside while loop. */

 /* Close input file. */

 fclose(filepnt);

} /* End of function rdphzsamp. */

/* Sum partial results in the array partres and write */

/* final sums to the output file IandQout.txt. */

sumpartres()

{

 /* Local Variables */

49

 FILE *filepnt;

 int sampnum, rbnum, finIout, finQout, IOF, QOF, signofA, signofB,
signofsum;

 /* Open output file for writing. */

 if ((filepnt = fopen("IandQout.txt", "w")) == NULL)

 fprintf(stderr, "\n\nTERMINAL FAULT: File IandQout.txt cannot be
written.\n\n");

 /* put headers in output file */

 fprintf(filepnt, " I_OF_Out Iout Q_OF_Out Qout\n");

 fprintf(filepnt, " -------- ------ -------- ------\n\n");

 /* for all phase samples that were read in */

 for (sampnum = 0; sampnum < (numofsamps + rangebins - 1); sampnum++)

 {

 finIout = finQout = IOF = QOF = 0; /* initialize final result
*/

 rbnum = rangebins - 1;

 while (rbnum >= 0)

 {

 signofA = (finIout >> 15) & 0x00000001;

 signofB = (Ipartres[sampnum][rbnum] >> 15) & 0x00000001;

 finIout = (finIout + Ipartres[sampnum][rbnum]) & 0x0000FFFF;

 signofsum = (finIout >> 15) & 0x00000001;

 if ((signofA == 0) && (signofB == 0) && (signofsum == 1))

 IOF = 1;

 if ((signofA == 1) && (signofB == 1) && (signofsum == 0))

 IOF = 1;

 signofA = (finQout >> 15) & 0x00000001;

 signofB = (Qpartres[sampnum][rbnum] >> 15) & 0x00000001;

 finQout = (finQout + Qpartres[sampnum][rbnum]) & 0x0000FFFF;

 signofsum = (finQout >> 15) & 0x00000001;

 if ((signofA == 0) && (signofB == 0) && (signofsum == 1))

 QOF = 1;

 if ((signofA == 1) && (signofB == 1) && (signofsum == 0))

 QOF = 1;

 rbnum--;

 }

 /* Print out result to output file. */

50

 fprintf(filepnt, " %d 0x%04X %d 0x%04X\n",
IOF, finIout, QOF, finQout);

 } /* end of outer for loop */

 /* Close output file. */

 fclose (filepnt);

} /* End of function sumpartres. */

main()

{

 /* Local Variables */

 clock_t start, finish;

 double duration;

 FILE *filepnt;

 start=clock();

 /* Read in phase increment data for each range bin. */

 rdphzinc();

 /* Read in amplitude scaling data for each range bin. */

 rdampscal();

 /* Initialize global storage arrays. */

 initarrays();

 /* Read in pulse phase samples and calculate partial results. */

 rdphzsamp();

 /* Sum partial results and output sums. */

 sumpartres();

 finish=clock();

 duration = (double)(finish - start) / CLOCKS_PER_SEC;

 /* Open output file for writing. */

 if ((filepnt = fopen("Time.txt", "w")) == NULL)

 fprintf(stderr, "\n\nTERMINAL FAULT: File Time.txt cannot be
written.\n\n");

 /* Print out result to output file. */

 fprintf(filepnt, "Time to complete %i samples: %2.4f seconds.\n",
numofsamps, duration);

 /* Close output file. */

 fclose (filepnt);

} /* End of main. */

51

APPENDIX B

This appendix contains the versions of the code before

they were ported to the SRC-6E.

A. D-TYPE FLIP FLOP

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity DFlipFlop is

 port (CLK, LD, RESET, D: in bit;

 Q: inout bit; Qnot: out bit := '1');

end DFLipFlop;

architecture Equations of DFlipFlop is

begin

 process (CLK, LD, RESET)

 begin

 if CLK='1' and CLK'EVENT then

 if RESET='1' then

 Q <= '0';

 elsif LD='1' then

 Q <= D;

 end if;

 end if;

 end process;

 Qnot <= not Q;

end Equations;

B. 5-BIT REGISTER

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity Register5 is

 port (CLK,LD,RESET: in bit; D5: in bit_vector (4 downto 0);

 Q5: inout bit_vector (4 downto 0); Q5not: out bit_vector (4
downto 0));

end Register5;

architecture Register5 of Register5 is

52

component DFlipFlop

 port (CLK, LD, RESET, D: in bit;

 Q: inout bit; Qnot: out bit);

end component;

begin

 DFF0: DFlipFlop port map (CLK, LD, RESET, D5(0), Q5(0),
Q5not(0));

 DFF1: DFlipFlop port map (CLK, LD, RESET, D5(1), Q5(1),
Q5not(1));

 DFF2: DFlipFlop port map (CLK, LD, RESET, D5(2), Q5(2),
Q5not(2));

 DFF3: DFlipFlop port map (CLK, LD, RESET, D5(3), Q5(3),
Q5not(3));

 DFF4: DFlipFlop port map (CLK, LD, RESET, D5(4), Q5(4),
Q5not(4));

end Register5;

C. 8-BIT REGISTER

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity Register8 is

 port (CLK, LD, RESET: in bit; D8: in bit_vector (7 downto 0);

 Q8: inout bit_vector (7 downto 0); Q8not: out bit_vector (7
downto 0));

end Register8;

architecture Register8 of Register8 is

component DFlipFlop

 port (CLK, LD, RESET, D: in bit;

 Q: inout bit; Qnot: out bit);

end component;

begin

 DFF0: DFlipFlop port map (CLK, LD, RESET, D8(0), Q8(0),
Q8not(0));

 DFF1: DFlipFlop port map (CLK, LD, RESET, D8(1), Q8(1),
Q8not(1));

 DFF2: DFlipFlop port map (CLK, LD, RESET, D8(2), Q8(2),
Q8not(2));

 DFF3: DFlipFlop port map (CLK, LD, RESET, D8(3), Q8(3),
Q8not(3));

 DFF4: DFlipFlop port map (CLK, LD, RESET, D8(4), Q8(4),
Q8not(4));

53

 DFF5: DFlipFlop port map (CLK, LD, RESET, D8(5), Q8(5),
Q8not(5));

 DFF6: DFlipFlop port map (CLK, LD, RESET, D8(6), Q8(6),
Q8not(6));

 DFF7: DFlipFlop port map (CLK, LD, RESET, D8(7), Q8(7),
Q8not(7));

end Register8;

D. 13-BIT REGISTER

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity Register13 is

 port (CLK, LD, RESET: in bit; D13: in bit_vector (12 downto 0);

 Q13: inout bit_vector (12 downto 0); Q13not: out bit_vector (12
downto 0));

end Register13;

architecture Register13 of Register13 is

component DFlipFlop

 port (CLK, LD, RESET, D: in bit;

 Q: inout bit; Qnot: out bit);

end component;

begin

 DFF0: DFlipFlop port map (CLK, LD, RESET, D13(0), Q13(0),
Q13not(0));

 DFF1: DFlipFlop port map (CLK, LD, RESET, D13(1), Q13(1),
Q13not(1));

 DFF2: DFlipFlop port map (CLK, LD, RESET, D13(2), Q13(2),
Q13not(2));

 DFF3: DFlipFlop port map (CLK, LD, RESET, D13(3), Q13(3),
Q13not(3));

 DFF4: DFlipFlop port map (CLK, LD, RESET, D13(4), Q13(4),
Q13not(4));

 DFF5: DFlipFlop port map (CLK, LD, RESET, D13(5), Q13(5),
Q13not(5));

 DFF6: DFlipFlop port map (CLK, LD, RESET, D13(6), Q13(6),
Q13not(6));

 DFF7: DFlipFlop port map (CLK, LD, RESET, D13(7), Q13(7),
Q13not(7));

 DFF8: DFlipFlop port map (CLK, LD, RESET, D13(8), Q13(8),
Q13not(8));

 DFF9: DFlipFlop port map (CLK, LD, RESET, D13(9), Q13(9),
Q13not(9));

54

 DFF10: DFlipFlop port map (CLK, LD, RESET, D13(10), Q13(10),
Q13not(10));

 DFF11: DFlipFlop port map (CLK, LD, RESET, D13(11), Q13(11),
Q13not(11));

 DFF12: DFlipFlop port map (CLK, LD, RESET, D13(12), Q13(12),
Q13not(12));

end Register13;

E. 17-BIT REGISTER

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity Register17 is

 port (CLK, LD, RESET: in bit; D17: in bit_vector (16 downto 0);

 Q17: inout bit_vector (16 downto 0); Q17not: out bit_vector (16
downto 0));

end Register17;

architecture Register17 of Register17 is

component DFlipFlop

 port (CLK, LD, RESET,D: in bit;

 Q: inout bit; Qnot: out bit);

end component;

begin

 DFF0: DFlipFlop port map (CLK, LD, RESET, D17(0), Q17(0),
Q17not(0));

 DFF1: DFlipFlop port map (CLK, LD, RESET, D17(1), Q17(1),
Q17not(1));

 DFF2: DFlipFlop port map (CLK, LD, RESET, D17(2), Q17(2),
Q17not(2));

 DFF3: DFlipFlop port map (CLK, LD, RESET, D17(3), Q17(3),
Q17not(3));

 DFF4: DFlipFlop port map (CLK, LD, RESET, D17(4), Q17(4),
Q17not(4));

 DFF5: DFlipFlop port map (CLK, LD, RESET, D17(5), Q17(5),
Q17not(5));

 DFF6: DFlipFlop port map (CLK, LD, RESET, D17(6), Q17(6),
Q17not(6));

 DFF7: DFlipFlop port map (CLK, LD, RESET, D17(7), Q17(7),
Q17not(7));

 DFF8: DFlipFlop port map (CLK, LD, RESET, D17(8), Q17(8),
Q17not(8));

 DFF9: DFlipFlop port map (CLK, LD, RESET, D17(9), Q17(9),
Q17not(9));

55

 DFF10: DFlipFlop port map (CLK, LD, RESET, D17(10), Q17(10),
Q17not(10));

 DFF11: DFlipFlop port map (CLK, LD, RESET, D17(11), Q17(11),
Q17not(11));

 DFF12: DFlipFlop port map (CLK, LD, RESET, D17(12), Q17(12),
Q17not(12));

 DFF13: DFlipFlop port map (CLK, LD, RESET, D17(13), Q17(13),
Q17not(13));

 DFF14: DFlipFlop port map (CLK, LD, RESET, D17(14), Q17(14),
Q17not(14));

 DFF15: DFlipFlop port map (CLK, LD, RESET, D17(15), Q17(15),
Q17not(15));

 DFF16: DFlipFlop port map (CLK, LD, RESET, D17(16), Q17(16),
Q17not(16));

end Register17;

F. FULL ADDER

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity FullAdder is

 port (X, Y, Cin: in bit;

 Cout, Sum: out bit);

end FullAdder;

architecture Equations of FullAdder is

begin

 Sum <= X xor Y xor Cin;

 Cout <= (X and Y) or (X and Cin) or (Y and Cin);

end Equations;

G. FULL ADDER WITH OVERFLOW SIGNAL

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity FullAdderOV is

 port (Ci, Cout, OVin: in bit;

 Co, OVout: out bit);

end FullAdderOV;

architecture Equations of FullAdderOV is

begin

 Co <= Cout;

56

 OVout <= OVin or (Ci xor Cout);

end Equations;

H. 5-BIT ADDER

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity Adder5 is

 port (A, B: in bit_vector(4 downto 0); Ci: in bit;

 S: out bit_vector(4 downto 0); Co: out bit);

end Adder5;

architecture Adder5 of Adder5 is

component FullAdder

 port (X, Y, Cin: in bit;

 Cout, Sum: out bit);

end component;

signal C: bit_vector(4 downto 1);

begin

 FA0: FullAdder port map (A(0), B(0), Ci, C(1), S(0));

 FA1: FullAdder port map (A(1), B(1), C(1), C(2), S(1));

 FA2: FullAdder port map (A(2), B(2), C(2), C(3), S(2));

 FA3: FullAdder port map (A(3), B(3), C(3), C(4), S(3));

 FA4: FullAdder port map (A(4), B(4), C(4), Co, S(4));

end Adder5;

I. 16-BIT ADDER WITH OVERFLOW SIGNAL

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity Adder16 is

 port (A, B: in bit_vector(15 downto 0); Ci, OVin: in bit;

 S: out bit_vector(16 downto 0); Co: out bit);

end Adder16; --bit 16 of S is overflow

architecture Adder16 of Adder16 is

component FullAdder

 port (X, Y, Cin: in bit;

 Cout, Sum: out bit);

end component;

component FullAdderOV

 port (Ci, Cout, OVin: in bit;

57

 Co, OVout: out bit);

end component;

signal C: bit_vector(16 downto 1);

begin

 FA0: FullAdder port map (A(0), B(0), Ci, C(1), S(0));

 FA1: FullAdder port map (A(1), B(1), C(1), C(2), S(1));

 FA2: FullAdder port map (A(2), B(2), C(2), C(3), S(2));

 FA3: FullAdder port map (A(3), B(3), C(3), C(4), S(3));

 FA4: FullAdder port map (A(4), B(4), C(4), C(5), S(4));

 FA5: FullAdder port map (A(5), B(5), C(5), C(6), S(5));

 FA6: FullAdder port map (A(6), B(6), C(6), C(7), S(6));

 FA7: FullAdder port map (A(7), B(7), C(7), C(8), S(7));

 FA8: FullAdder port map (A(8), B(8), C(8), C(9), S(8));

 FA9: FullAdder port map (A(9), B(9), C(9), C(10), S(9));

 FA10: FullAdder port map (A(10), B(10), C(10), C(11), S(10));

 FA11: FullAdder port map (A(11), B(11), C(11), C(12), S(11));

 FA12: FullAdder port map (A(12), B(12), C(12), C(13), S(12));

 FA13: FullAdder port map (A(13), B(13), C(13), C(14), S(13));

 FA14: FullAdder port map (A(14), B(14), C(14), C(15), S(14));

 FA15: FullAdder port map (A(15), B(15), C(15), C(16), S(15));

 FAOV: FullAdderOV port map (C(15), C(16), OVin, Co, S(16));

end Adder16;

J. LUT

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use bit_pack.all;

entity ROMLUT is

port (SIN, COS:out bit_vector(8 downto 1);

 FIVEBITS:in bit_vector(5 downto 1));

end ROMLUT;

architecture ROMLUT of ROMLUT is

type ROMLUT is array (0 to 31) of bit_vector(15 downto 0);

constant FSM_ROMLUT: ROMLUT := -- 8 bits of sine and 8 bits of cosine

("0000000001111111","0001100101111101","0011000101110101","010001110110
1010","0101101001011010","0110101001000111","0111010100110001","0111110
100011001","0111111100000000","0111110111100111","0111010111001111","01
10101010111001","0101101010100110","0100011110010110","0011000110001011
","0001100110000011","0000000010000001","1110011110000011","11001111100

58

01011","1011100110010110","1010011010100110","1001011010111001","100010
1111001111","1000001111100111","1000000100000000","1000001100011001","1
000101100110001","1001011001000111","1010011001011010","101110010110101
0","1100111101110101","1110011101111101");

begin

 process (FIVEBITS)

 variable ROMLUTValue: bit_vector(15 downto 0);

 begin

 ROMLUTValue:= FSM_ROMLUT(vec2int(FIVEBITS));

 SIN <= ROMLUTValue(15 downto 8);

 COS <= ROMLUTValue(7 downto 0);

 end process;

end ROMLUT;

K. CONTROL LOGIC BLOCK

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity ControlLogic is

 port (ODVin, URB, PSVin, CLK, OPER: in bit;

 CLR13, CLR17: out bit := '1'; ODVout, PSVout: out bit);

end ControlLogic;

architecture ControlLogic of ControlLogic is

component DFlipFlop

 port (CLK, LD, RESET, D: in bit;

 Q: inout bit; Qnot: out bit);

end component;

signal
RESET,D1,Q1,Q1Not,D2,Q2,Q2Not,D3,Q3,Q3Not,D4,Q4,Q4Not,PSVD,PSVQ,PSVQNot
:bit;

begin

 RESET <= '0';

 PSVFF: DFlipFlop port map (CLK, OPER, RESET, PSVD, PSVQ,
PSVQNot);

 DFF1: DFLipFlop port map(CLK, OPER, RESET, D1, Q1, Q1Not);

 DFF2: DFLipFlop port map(CLK, OPER, RESET, D2, Q2, Q2Not);

 DFF3: DFLipFlop port map(CLK, OPER, RESET, D3, Q3, Q3Not);

 DFF4: DFLipFlop port map(CLK, OPER, RESET, D4, Q4, Q4Not);

 process (URB, ODVin, PSVin)

 begin

 PSVD <= PSVin;

59

 D1 <= URB and PSVQ;

 D2 <= Q1;

 D3 <= ODVin or Q2;

 D4 <= Q3;

 CLR13 <= Q2Not;

 CLR17 <= Q3Not;

 PSVout <= PSVQ;

 ODVout <= Q4;

 end process;

end ControlLogic;

L. SHIFTER

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use bit_pack.all;

entity GainShifter is

 port (Control:in bit_vector(4 downto 1); Data: in bit_vector(8
downto 1);

 Output: out bit_vector(13 downto 1));

end GainShifter;

architecture GainShifter of GainShifter is

begin

 process (Control, Data)

 variable C, shift, resolution, DataStop, OutStart, Out-
Stop:integer;

 variable Ones:bit_vector(13 downto 1) :="1111111111111";

 begin

 C := vec2int(Control);

 case C is

 when 0 to 2 => shift := C;

 resolution := C+3;

 when 3 to 4 => shift := 3;

 resolution :=6;

 when 5 to 7 => shift := C-1;

 if C=5 then resolution :=7;

 else resolution :=8;

 end if;

 when 8 to 10 => shift := C-4;

60

 if C=8 then resolution :=7;

 else resolution :=8;

 end if;

 when 11 to 12 => shift := 7;

 resolution :=8;

 when 13 to 15 => shift := C-5;

 resolution :=8;

 when others => -- summon blue screen of death

 end case;

 DataStop:=9-resolution;

 OutStart:=3+shift;

 OutStop:=Outstart-resolution+1;

 Output <= "0000000000000";

 Output(OutStart downto OutStop) <= Data (8 downto DataS-
top);

 if Data(8)='1' then --need to preserve the sign bit
here

 Output(13 downto resolution) <= Ones(13 downto reso-
lution);

 end if;

 end process;

end GainShifter;

M. ONE RANGE BIN

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity FakeRadarChip is

 port (PhaseSamp, PhaseInc: in bit_vector (5 downto 1); Gain: in
bit_vector (4 downto 1);

 BinSelect: in bit_vector (9 downto 1); CLK, ODVin, URB, PSVin,
OPER, PRB, UNP: in bit;

 OtherBinDataSIN, OtherBinDataCOS: in bit_vector (17 downto 1);

 Q, I: out bit_vector (17 downto 1); ODVout, PSVout: out bit;
DRFM: out bit_vector (5 downto 1));

end FakeRadarChip;

architecture FakeRadarChip of FakeRadarChip is

component Register5 is

 port (CLK, LD, RESET: in bit; D5: in bit_vector (4 downto 0);

 Q5: inout bit_vector (4 downto 0); Q5not: out bit_vector (4
downto 0));

61

end component;

component Register8 is

 port (CLK, LD, RESET: in bit; D8: in bit_vector (7 downto 0);

 Q8: inout bit_vector (7 downto 0); Q8not: out bit_vector (7
downto 0));

end component;

component Register13 is

 port (CLK, LD, RESET: in bit; D13: in bit_vector (12 downto 0);

 Q13: inout bit_vector (12 downto 0); Q13not: out bit_vector (12
downto 0));

end component;

component Register17 is

 port (CLK, LD, RESET: in bit; D17: in bit_vector (16 downto 0);

 Q17: inout bit_vector (16 downto 0); Q17not: out bit_vector (16
downto 0));

end component;

component Adder5 is

 port (A, B: in bit_vector(4 downto 0); Ci: in bit;

 S: out bit_vector(4 downto 0); Co: out bit);

end component;

component Adder16 is

 port (A, B: in bit_vector(15 downto 0); Ci, OVin: in bit;

 S: out bit_vector(16 downto 0); Co: out bit);

end component;

component ROMLUT is

port (SIN, COS:out bit_vector(1 to 8);

 FIVEBITS:in bit_vector(1 to 5));

end component;

component GainShifter is

 port (Control:in bit_vector(4 downto 1); Data: in bit_vector(8
downto 1);

 Output: out bit_vector(13 downto 1));

end component;

component ControlLogic is

 port (ODVin, URB, PSVin, CLK, OPER: in bit;

 CLR13, CLR17, ODVout, PSVout: out bit);

end component;

62

signal
QOutReg1,QNotOutReg1,QOutReg2,QNotOutReg2,QOutReg3,QNotOutReg3,QOutReg4
,QNotOutReg4,

 QOutReg5,QNotOutReg5,QOutReg6,QNotOutReg6,OutAdd1: bit_vector (5
downto 1);

signal QOutReg7,QNotOutReg7,QOutReg8,QNotOutReg8, LUTSIN, LUTCOS:
bit_vector (8 downto 1);

signal QOutReg9,QNotOutReg9,QOutReg10,QNotOutReg10, OutShiftSIN, Out-
ShiftCOS: bit_vector (13 downto 1);

signal
QOutReg11,QNotOutReg11,QOutReg12,QNotOutReg12,QOutReg13,QNotOutReg13,QO
utReg14,QNotOutReg14,

OutAdd2, OutAdd3: bit_vector (17 downto 1);

signal InputAdder2, InputAdder3: bit_vector (16 downto 1);

signal LD, CLR5, CLR8, CLR13, CLR17, Ci, Co1, Co2, Co3: bit;

signal InReg5: bit_vector (5 downto 1);

begin

 CLR5 <= '0';

 CLR8 <= '0';

 Ci <= '0';

 LD <= OPER;

 InReg5(4 downto 1) <= Gain (4 downto 1);

 InReg5(5) <= URB;

 Reg1: Register5 port map(CLK, LD, CLR5, PhaseInc(5 downto 1),
QOutReg1(5 downto 1), QNotOutReg1(5 downto 1));

 Reg2: Register5 port map(CLK, LD, CLR5, QOutReg1(5 downto 1),
QOutReg2(5 downto 1), QNotOutReg2(5 downto 1));

 Reg3: Register5 port map(CLK, LD, CLR5, PhaseSamp(5 downto 1),
QOutReg3(5 downto 1), QNotOutReg3(5 downto 1));

 Add1: Adder5 port map (QOutReg2,QOutReg3, Ci, OutAdd1(5 downto
1), Co1);

 Reg4: Register5 port map(CLK, LD, CLR5, OutAdd1(5 downto 1),
QOutReg4(5 downto 1), QNotOutReg4(5 downto 1));

 LUT: ROMLUT port map (LUTSIN(8 downto 1),LUTCOS(8 downto
1),QOutReg4(5 downto 1));

 Reg5: Register5 port map(CLK, LD, CLR5, InReg5(5 downto 1),
QOutReg5(5 downto 1), QNotOutReg5(5 downto 1));

 Reg6: Register5 port map(CLK, LD, CLR5, QOutReg5(5 downto 1),
QOutReg6(5 downto 1), QNotOutReg6(5 downto 1));

 Reg7: Register8 port map(CLK, LD, CLR8, LUTSIN(8 downto 1),
QOutReg7(8 downto 1), QNotOutReg7(8 downto 1));

 Reg8: Register8 port map(CLK, LD, CLR8, LUTCOS(8 downto 1),
QOutReg8(8 downto 1), QNotOutReg8(8 downto 1));

63

 Shift1: GainShifter port map (QOutReg6(4 downto 1),QOutReg7(8
downto 1),OutShiftSIN(13 downto 1));

 Shift2: GainShifter port map (QOutReg6(4 downto 1),QOutReg8(8
downto 1),OutShiftCOS(13 downto 1));

 Reg9: Register13 port map(CLK, LD, CLR13, OutShiftSIN(13 downto
1), QOutReg9(13 downto 1), QNotOutReg9(13 downto 1));

 Reg10: Register13 port map(CLK, LD, CLR13, OutShiftCOS(13 downto
1), QOutReg10(13 downto 1), QNotOutReg10(13 downto 1));

 Reg11: Register17 port map(CLK, LD, '0', OtherBinDataSIN(17
downto 1), QOutReg11(17 downto 1), QNotOutReg11(17 downto 1));

 Reg12: Register17 port map(CLK, LD, '0', OtherBinDataCOS(17
downto 1), QOutReg12(17 downto 1), QNotOutReg12(17 downto 1));

 Add2: Adder16 port map (InputAdder2, QOutReg11(16 downto 1), Ci,
QOutReg11(17), OutAdd2(17 downto 1),Co2);

 Add3: Adder16 port map (InputAdder3, QOutReg12(16 downto 1), Ci,
QOutReg12(17), OutAdd3(17 downto 1),Co3);

 Reg13: Register17 port map(CLK, LD, CLR17, OutAdd2(17 downto 1),
QOutReg13(17 downto 1), QNotOutReg13(17 downto 1));

 Reg14: Register17 port map(CLK, LD, CLR17, OutAdd3(17 downto 1),
QOutReg14(17 downto 1), QNotOutReg14(17 downto 1));

 Control: ControlLogic port map (ODVin, URB, PSVin, CLK, OPER,
CLR13, CLR17, ODVout, PSVout);

 InputAdder2(13 downto 1) <= QOutReg9(13 downto 1);

 InputAdder2(14) <= QOutReg9(13);

 InputAdder2(15) <= QOutReg9(13);

 InputAdder2(16) <= QOutReg9(13);

 InputAdder3(13 downto 1) <= QOutReg10(13 downto 1);

 InputAdder3(14) <= QOutReg10(13);

 InputAdder3(15) <= QOutReg10(13);

 InputAdder3(16) <= QOutReg10(13);

 DRFM(5 downto 1) <= QOutReg3(5 downto 1);

 Q <= QOutReg13;

 I <= QOutReg14;

end FakeRadarChip;

N. TWO RANGE BINS

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity TwoBins is

 port (PhaseSamp, PhaseInc0, PhaseInc1: in bit_vector (5 downto
1);

64

 Gain0, Gain1: in bit_vector (4 downto 1);BinSelect0, BinSelect1:
in bit_vector (9 downto 1);

 CLK, ODVin, URB0, URB1, PSVin, OPER0, OPER1, PRB0, PRB1, UNP0,
UNP1:in bit;

 OtherBinDataSIN, OtherBinDataCOS: in bit_vector (17 downto 1);

 Q, I: out bit_vector (17 downto 1); Q1, I1: inout bit_vector (17
downto 1);ODVout0, ODVout1, PSVout0, PSVout1:inout bit; CLR13out0,
CLR13out1, CLR17out0, CLR17out1: out bit;

 DRFM0, DRFM1:inout bit_vector (5 downto 1));

end TwoBins;

architecture TwoBins of TwoBins is

component FakeRadarChip is

 port (PhaseSamp, PhaseInc: in bit_vector (5 downto 1); Gain: in
bit_vector (4 downto 1);

 BinSelect: in bit_vector (9 downto 1); CLK, ODVin, URB, PSVin,
OPER, PRB, UNP: in bit;

 OtherBinDataSIN, OtherBinDataCOS: in bit_vector (17 downto 1);

 Q, I: out bit_vector (17 downto 1); ODVout, PSVout, CLR13out,
CLR17out: out bit; DRFM: out bit_vector (5 downto 1));

end component;

begin -- BIN0 is the primary output

BIN0: FakeRadarChip port map (DRFM1, PhaseInc0, Gain0, BinSelect0, CLK,
ODVout1, URB0, PSVout1, OPER0,

 PRB0, UNP0, Q1, I1, Q, I, ODVout0, PSVout0, CLR13out0,
CLR17out0, DRFM0);

BIN1: FakeRadarChip port map (PhaseSamp, PhaseInc1, Gain1, BinSelect1,
CLK, ODVin, URB1, PSVin, OPER1,

 PRB1, UNP1, OtherBinDataSIN, OtherBinDataCOS, Q1, I1, OD-
Vout1, PSVout1, CLR13out1, CLR17out1, DRFM1);

end TwoBins;

O. FOUR RANGE BINS

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity FourBins is

 port (PhaseSamp, PhaseInc0, PhaseInc1,PhaseInc2,PhaseInc3: in
bit_vector (5 downto 1);

 Gain0, Gain1, Gain2, Gain3: in bit_vector (4 downto 1);

 CLK, ODVin, PSVin:in bit; OtherBinDataSIN, OtherBinDataCOS: in
bit_vector (17 downto 1);

 Q, I: out bit_vector (17 downto 1); ODVout,PSVout:out bit;

 DRFMout:out bit_vector (5 downto 1));

65

end FourBins;

architecture FourBins of FourBins is

component FakeRadarChip is

 port (PhaseSamp, PhaseInc: in bit_vector (5 downto 1); Gain: in
bit_vector (4 downto 1);

 BinSelect: in bit_vector (9 downto 1); CLK, ODVin, URB, PSVin,
OPER, PRB, UNP: in bit;

 OtherBinDataSIN, OtherBinDataCOS: in bit_vector (17 downto 1);

 Q, I: out bit_vector (17 downto 1); ODVout, PSVout: out bit;
DRFM: out bit_vector (5 downto 1));

end component;

signal Q1,I1,Q2,I2,Q3,I3: bit_vector (17 downto 1);

signal DRFM0, DRFM1,DRFM2,DRFM3: bit_vector (5 downto 1);

signal ODVout0, ODVout1, ODVout2, ODVout3,
PSVout0,PSVout1,PSVout2,PSVout3:bit;

begin -- BIN0 is the primary output

BIN0: FakeRadarChip port map (DRFM1, PhaseInc0, Gain0, "000000000",
CLK, ODVout1, '1', PSVout1, '1',

 '1', '1', Q1, I1, Q, I, ODVout0, PSVout0, DRFM0);

BIN1: FakeRadarChip port map (DRFM2, PhaseInc1, Gain1, "000000000",
CLK, ODVout2, '1', PSVout2, '1',

 '1', '1', Q2, I2, Q1, I1, ODVout1, PSVout1, DRFM1);

BIN2: FakeRadarChip port map (DRFM3, PhaseInc2, Gain2, "000000000",
CLK, ODVout3, '1', PSVout3, '1',

 '1', '1', Q3, I3, Q2, I2, ODVout2, PSVout2, DRFM2);

BIN3: FakeRadarChip port map (PhaseSamp, PhaseInc3, Gain3, "000000000",
CLK, ODVin, '1', PSVin, '1',

 '1', '1', OtherBinDataSIN, OtherBinDataCOS, Q3, I3, OD-
Vout3, PSVout3, DRFM3);

ODVout<=ODVout0;

PSVout<=ODVout0;

DRFMout<=DRFM0;

end FourBins;

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

APPENDIX C

This appendix contains the final version of the VHDL

code that was implemented on the SRC-6E and the support

files required to compile and execute it.

A. MACRO VHDL FILE

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity DFlipFlop is

 port (CLK, LD, RESET, D: in bit;

 Q: inout bit; Qnot: out bit := '1');

end DFLipFlop;

architecture Equations of DFlipFlop is

begin

 process (CLK, LD, RESET)

 begin

 if CLK='1' and CLK'EVENT then

 if RESET='1' then

 Q <= '0';

 elsif LD='1' then

 Q <= D;

 end if;

 end if;

 end process;

 Qnot <= not Q;

end Equations;

entity Register5 is

 port (CLK,LD,RESET: in bit; D5: in bit_vector (4 downto 0);

 Q5: inout bit_vector (4 downto 0); Q5not: out bit_vector (4
downto 0));

end Register5;

architecture Register5 of Register5 is

68

component DFlipFlop

 port (CLK, LD, RESET, D: in bit;

 Q: inout bit; Qnot: out bit);

end component;

begin

 DFF0: DFlipFlop port map (CLK, LD, RESET, D5(0), Q5(0),
Q5not(0));

 DFF1: DFlipFlop port map (CLK, LD, RESET, D5(1), Q5(1),
Q5not(1));

 DFF2: DFlipFlop port map (CLK, LD, RESET, D5(2), Q5(2),
Q5not(2));

 DFF3: DFlipFlop port map (CLK, LD, RESET, D5(3), Q5(3),
Q5not(3));

 DFF4: DFlipFlop port map (CLK, LD, RESET, D5(4), Q5(4),
Q5not(4));

end Register5;

entity Register8 is

 port (CLK, LD, RESET: in bit; D8: in bit_vector (7 downto 0);

 Q8: inout bit_vector (7 downto 0); Q8not: out bit_vector (7
downto 0));

end Register8;

architecture Register8 of Register8 is

component DFlipFlop

 port (CLK, LD, RESET, D: in bit;

 Q: inout bit; Qnot: out bit);

end component;

begin

 DFF0: DFlipFlop port map (CLK, LD, RESET, D8(0), Q8(0),
Q8not(0));

 DFF1: DFlipFlop port map (CLK, LD, RESET, D8(1), Q8(1),
Q8not(1));

 DFF2: DFlipFlop port map (CLK, LD, RESET, D8(2), Q8(2),
Q8not(2));

 DFF3: DFlipFlop port map (CLK, LD, RESET, D8(3), Q8(3),
Q8not(3));

 DFF4: DFlipFlop port map (CLK, LD, RESET, D8(4), Q8(4),
Q8not(4));

69

 DFF5: DFlipFlop port map (CLK, LD, RESET, D8(5), Q8(5),
Q8not(5));

 DFF6: DFlipFlop port map (CLK, LD, RESET, D8(6), Q8(6),
Q8not(6));

 DFF7: DFlipFlop port map (CLK, LD, RESET, D8(7), Q8(7),
Q8not(7));

end Register8;

entity Register13 is

 port (CLK, LD, RESET: in bit; D13: in bit_vector (12 downto 0);

 Q13: inout bit_vector (12 downto 0); Q13not: out bit_vector (12
downto 0));

end Register13;

architecture Register13 of Register13 is

component DFlipFlop

 port (CLK, LD, RESET, D: in bit;

 Q: inout bit; Qnot: out bit);

end component;

begin

 DFF0: DFlipFlop port map (CLK, LD, RESET, D13(0), Q13(0),
Q13not(0));

 DFF1: DFlipFlop port map (CLK, LD, RESET, D13(1), Q13(1),
Q13not(1));

 DFF2: DFlipFlop port map (CLK, LD, RESET, D13(2), Q13(2),
Q13not(2));

 DFF3: DFlipFlop port map (CLK, LD, RESET, D13(3), Q13(3),
Q13not(3));

 DFF4: DFlipFlop port map (CLK, LD, RESET, D13(4), Q13(4),
Q13not(4));

 DFF5: DFlipFlop port map (CLK, LD, RESET, D13(5), Q13(5),
Q13not(5));

 DFF6: DFlipFlop port map (CLK, LD, RESET, D13(6), Q13(6),
Q13not(6));

 DFF7: DFlipFlop port map (CLK, LD, RESET, D13(7), Q13(7),
Q13not(7));

 DFF8: DFlipFlop port map (CLK, LD, RESET, D13(8), Q13(8),
Q13not(8));

 DFF9: DFlipFlop port map (CLK, LD, RESET, D13(9), Q13(9),
Q13not(9));

70

 DFF10: DFlipFlop port map (CLK, LD, RESET, D13(10), Q13(10),
Q13not(10));

 DFF11: DFlipFlop port map (CLK, LD, RESET, D13(11), Q13(11),
Q13not(11));

 DFF12: DFlipFlop port map (CLK, LD, RESET, D13(12), Q13(12),
Q13not(12));

end Register13;

entity Register17 is

 port (CLK, LD, RESET: in bit; D17: in bit_vector (16 downto 0);

 Q17: inout bit_vector (16 downto 0); Q17not: out bit_vector (16
downto 0));

end Register17;

architecture Register17 of Register17 is

component DFlipFlop

 port (CLK, LD, RESET,D: in bit;

 Q: inout bit; Qnot: out bit);

end component;

begin

 DFF0: DFlipFlop port map (CLK, LD, RESET, D17(0), Q17(0),
Q17not(0));

 DFF1: DFlipFlop port map (CLK, LD, RESET, D17(1), Q17(1),
Q17not(1));

 DFF2: DFlipFlop port map (CLK, LD, RESET, D17(2), Q17(2),
Q17not(2));

 DFF3: DFlipFlop port map (CLK, LD, RESET, D17(3), Q17(3),
Q17not(3));

 DFF4: DFlipFlop port map (CLK, LD, RESET, D17(4), Q17(4),
Q17not(4));

 DFF5: DFlipFlop port map (CLK, LD, RESET, D17(5), Q17(5),
Q17not(5));

 DFF6: DFlipFlop port map (CLK, LD, RESET, D17(6), Q17(6),
Q17not(6));

 DFF7: DFlipFlop port map (CLK, LD, RESET, D17(7), Q17(7),
Q17not(7));

 DFF8: DFlipFlop port map (CLK, LD, RESET, D17(8), Q17(8),
Q17not(8));

 DFF9: DFlipFlop port map (CLK, LD, RESET, D17(9), Q17(9),
Q17not(9));

71

 DFF10: DFlipFlop port map (CLK, LD, RESET, D17(10), Q17(10),
Q17not(10));

 DFF11: DFlipFlop port map (CLK, LD, RESET, D17(11), Q17(11),
Q17not(11));

 DFF12: DFlipFlop port map (CLK, LD, RESET, D17(12), Q17(12),
Q17not(12));

 DFF13: DFlipFlop port map (CLK, LD, RESET, D17(13), Q17(13),
Q17not(13));

 DFF14: DFlipFlop port map (CLK, LD, RESET, D17(14), Q17(14),
Q17not(14));

 DFF15: DFlipFlop port map (CLK, LD, RESET, D17(15), Q17(15),
Q17not(15));

 DFF16: DFlipFlop port map (CLK, LD, RESET, D17(16), Q17(16),
Q17not(16));

end Register17;

entity ROMLUT is

port (SIN, COS:out bit_vector(8 downto 1);

 FIVEBITS:in bit_vector(5 downto 1));

end ROMLUT;

architecture ROMLUT of ROMLUT is

signal ROMLUTValue : bit_vector(15 downto 0);

begin

with FIVEBITS Select

 ROMLUTValue <="0000000001111111" when "00000", --0

 "0001100101111101" when "00001", --1

 "0011000101110101" when "00010", --2

 "0100011101101010" when "00011", --3

 "0101101001011010" when "00100", --4

 "0110101001000111" when "00101", --5

 "0111010100110001" when "00110", --6

 "0111110100011001" when "00111", --7

 "0111111100000000" when "01000", --8

 "0111110111100111" when "01001", --9

 "0111010111001111" when "01010", --A

 "0110101010111001" when "01011", --b

72

 "0101101010100110" when "01100", --C

 "0100011110010110" when "01101", --d

 "0011000110001011" when "01110", --E

 "0001100110000011" when "01111", --F

 "0000000010000001" when "10000", --10

 "1110011110000011" when "10001", --11

 "1100111110001011" when "10010", --12

 "1011100110010110" when "10011", --13

 "1010011010100110" when "10100", --14

 "1001011010111001" when "10101", --15

 "1000101111001111" when "10110", --16

 "1000001111100111" when "10111", --17

 "1000000100000000" when "11000", --18

 "1000001100011001" when "11001", --19

 "1000101100110001" when "11010", --1A

 "1001011001000111" when "11011", --1b

 "1010011001011010" when "11100", --1C

 "1011100101101010" when "11101", --1d

 "1100111101110101" when "11110", --1E

 "1110011101111101" when "11111", --1F

 "0000000000000000" when others; --Never Occurs

 SIN <= ROMLUTValue(15 downto 8);

 COS <= ROMLUTValue(7 downto 0);

end ROMLUT;

entity FullAdder is

 port (X, Y, Cin: in bit;

 Cout, Sum: out bit);

end FullAdder;

architecture Equations of FullAdder is

begin

 Sum <= X xor Y xor Cin;

 Cout <= (X and Y) or (X and Cin) or (Y and Cin);

end Equations;

entity FullAdderOV is

73

 port (Ci, Cout, OVin: in bit;

 Co, OVout: out bit);

end FullAdderOV;

architecture Equations of FullAdderOV is

begin

 Co <= Cout;

 OVout <= OVin or (Ci xor Cout);

end Equations;

entity Adder5 is

 port (A, B: in bit_vector(4 downto 0); Ci: in bit;

 S: out bit_vector(4 downto 0); Co: out bit);

end Adder5;

architecture Adder5 of Adder5 is

component FullAdder

 port (X, Y, Cin: in bit;

 Cout, Sum: out bit);

end component;

signal C: bit_vector(4 downto 1);

begin

 FA0: FullAdder port map (A(0), B(0), Ci, C(1), S(0));

 FA1: FullAdder port map (A(1), B(1), C(1), C(2), S(1));

 FA2: FullAdder port map (A(2), B(2), C(2), C(3), S(2));

 FA3: FullAdder port map (A(3), B(3), C(3), C(4), S(3));

 FA4: FullAdder port map (A(4), B(4), C(4), Co, S(4));

end Adder5;

entity CLAH4 is

 port (A, B: in bit_vector(3 downto 0); Cin: in bit; Cout: out
bit);

end CLAH4;

architecture CLAH4 of CLAH4 is

signal g0, g1, g2, g3, p0, p1, p2, p3: bit;

begin

 g0 <= A(0) and B(0);

74

 p0 <= A(0) or B(0);

 g1 <= A(1) and B(1);

 p1 <= A(1) or B(1);

 g2 <= A(2) and B(2);

 p2 <= A(2) or B(2);

 g3 <= A(3) and B(3);

 p3 <= A(3) or B(3);

 Cout <= g3 or (p3 and g2) or (p3 and p2 and g1) or (p3 and p2 and
p1 and g0) or (p3 and p2 and p1 and p0 and Cin);

end CLAH4;

entity CLAH8 is

 port (A, B: in bit_vector(7 downto 0); Cin: in bit; Cout: out
bit);

end CLAH8;

architecture CLAH8 of CLAH8 is

signal g0, g1, g2, g3, g4, g5, g6, g7, p0, p1, p2, p3, p4, p5, p6, p7:
bit;

begin

 g0 <= A(0) and B(0);

 p0 <= A(0) or B(0);

 g1 <= A(1) and B(1);

 p1 <= A(1) or B(1);

 g2 <= A(2) and B(2);

 p2 <= A(2) or B(2);

 g3 <= A(3) and B(3);

 p3 <= A(3) or B(3);

 g4 <= A(4) and B(4);

 p4 <= A(4) or B(4);

 g5 <= A(5) and B(5);

 p5 <= A(5) or B(5);

 g6 <= A(6) and B(6);

 p6 <= A(6) or B(6);

 g7 <= A(7) and B(7);

 p7 <= A(7) or B(7);

 Cout <= g7 or (p7 and g6) or (p7 and p6 and g5) or (p7 and p6 and
p5 and g4) or (p7 and p6 and p5 and p4 and g3) or

75

 (p7 and p6 and p5 and p4 and p3 and g2) or (p7 and p6 and p5 and
p4 and p3 and p2 and g1) or

 (p7 and p6 and p5 and p4 and p3 and p2 and p1 and g0) or (p7 and
p6 and p5 and p4 and p3 and p2 and p1 and p0 and Cin);

end CLAH8;

entity Adder16 is

 port (A, B: in bit_vector(15 downto 0); Ci, OVin: in bit;

 S: out bit_vector(16 downto 0); Co: out bit);

end Adder16; --bit 16 of S is overflow

architecture Adder16 of Adder16 is

component CLAH4

 port (A, B: in bit_vector(3 downto 0); Cin: in bit; Cout: out
bit);

end component;

component CLAH8

 port (A, B: in bit_vector(7 downto 0); Cin: in bit; Cout: out
bit);

end component;

component FullAdder

 port (X, Y, Cin: in bit;

 Cout, Sum: out bit);

end component;

component FullAdderOV

 port (Ci, Cout, OVin: in bit;

 Co, OVout: out bit);

end component;

signal C: bit_vector(16 downto 1);

signal dummy1, dummy2, dummy3: bit;

begin

 FA0: FullAdder port map (A(0), B(0), Ci, C(1), S(0));

 FA1: FullAdder port map (A(1), B(1), C(1), C(2), S(1));

 FA2: FullAdder port map (A(2), B(2), C(2), C(3), S(2));

 FA3: FullAdder port map (A(3), B(3), C(3), dummy1, S(3));

 CLAH0: CLAH4 port map (A(3 downto 0), B(3 downto 0), Ci, C(4));

 FA4: FullAdder port map (A(4), B(4), C(4), C(5), S(4));

 FA5: FullAdder port map (A(5), B(5), C(5), C(6), S(5));

76

 FA6: FullAdder port map (A(6), B(6), C(6), C(7), S(6));

 FA7: FullAdder port map (A(7), B(7), C(7), dummy2, S(7));

 CLAH1: CLAH8 port map (A(7 downto 0), B(7 downto 0), Ci, C(8));

 FA8: FullAdder port map (A(8), B(8), C(8), C(9), S(8));

 FA9: FullAdder port map (A(9), B(9), C(9), C(10), S(9));

 FA10: FullAdder port map (A(10), B(10), C(10), C(11), S(10));

 FA11: FullAdder port map (A(11), B(11), C(11), dummy3, S(11));

 CLAH2: CLAH4 port map (A(11 downto 8), B(11 downto 8), C(8),
C(12));

 FA12: FullAdder port map (A(12), B(12), C(12), C(13), S(12));

 FA13: FullAdder port map (A(13), B(13), C(13), C(14), S(13));

 FA14: FullAdder port map (A(14), B(14), C(14), C(15), S(14));

 FA15: FullAdder port map (A(15), B(15), C(15), C(16), S(15));

 FAOV: FullAdderOV port map (C(15), C(16), OVin, Co, S(16));

end Adder16;

entity ControlLogic is

 port (ODVin, URB, PSVin, CLK, OPER: in bit;

 CLR13, CLR17: out bit := '1'; ODVout, PSVout: out bit);

end ControlLogic;

architecture ControlLogic of ControlLogic is

component DFlipFlop

 port (CLK, LD, RESET, D: in bit;

 Q: inout bit; Qnot: out bit);

end component;

signal
RESET,D1,Q1,Q1Not,D2,Q2,Q2Not,D3,Q3,Q3Not,D4,Q4,Q4Not,PSVD,PSVQ,PSVQNot
:bit;

begin

 RESET <= '0';

 PSVFF: DFlipFlop port map (CLK, OPER, RESET, PSVD, PSVQ,
PSVQNot);

 DFF1: DFLipFlop port map(CLK, OPER, RESET, D1, Q1, Q1Not);

 DFF2: DFLipFlop port map(CLK, OPER, RESET, D2, Q2, Q2Not);

 DFF3: DFLipFlop port map(CLK, OPER, RESET, D3, Q3, Q3Not);

 DFF4: DFLipFlop port map(CLK, OPER, RESET, D4, Q4, Q4Not);

 PSVD <= PSVin;

77

 D1 <= URB and PSVQ;

 D2 <= Q1;

 D3 <= ODVin or Q2;

 D4 <= Q3;

 CLR13 <= Q2Not;

 CLR17 <= Q3Not;

 PSVout <= PSVQ;

 ODVout <= Q4;

end ControlLogic;

entity GainShifter is

 port (Control:in bit_vector(4 downto 1); Data: in bit_vector(8
downto 1);

 Output: out bit_vector(13 downto 1));

end GainShifter;

architecture GainShifter of GainShifter is

begin

 process (Control,Data)

 begin

 Output(13 downto 1) <= "0000000000000";

 case Control is

 when "0000" => Output(3 downto 1) <= Data(8 downto 6);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 4) <= "1111111111";

 end if;

 when "0001" => Output(4 downto 1) <= Data(8 downto 5);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 5) <= "111111111";

 end if;

 when "0010" => Output(5 downto 1) <= Data(8 downto 4);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 6) <= "11111111";

 end if;

78

 when "0011" => Output(6 downto 1) <= Data(8 downto 3);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 7) <= "1111111";

 end if;

 when "0100" => Output(6 downto 1) <= Data(8 downto 3);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 7) <= "1111111";

 end if;

 when "0101" => Output(7 downto 1) <= Data(8 downto 2);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 8) <= "111111";

 end if;

 when "0110" => Output(8 downto 1) <= Data(8 downto 1);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 9) <= "11111";

 end if;

 when "0111" => Output(9 downto 2) <= Data(8 downto 1);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 10) <= "1111";

 end if;

 when "1000" => Output(7 downto 1) <= Data(8 downto 2);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 8) <= "111111";

 end if;

 when "1001" => Output(8 downto 1) <= Data(8 downto 1);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 9) <= "11111";

 end if;

 when "1010" => Output(9 downto 2) <= Data(8 downto 1);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 10) <= "1111";

 end if;

 when "1011" => Output(10 downto 3) <= Data(8 downto 1);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 11) <= "111";

 end if;

 when "1100" => Output(10 downto 3) <= Data(8 downto 1);

79

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 11) <= "111";

 end if;

 when "1101" => Output(11 downto 4) <= Data(8 downto 1);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13 downto 12) <= "11";

 end if;

 when "1110" => Output(12 downto 5) <= Data(8 downto 1);

 if Data(8)='1' then --need to preserve the sign bit

 Output(13) <= '1';

 end if;

 when "1111" => Output(13 downto 6) <= Data(8 downto 1);

 when others => -- summon blue screen of death

 end case;

 end process;

end GainShifter;

entity OneBin is

 port (PhaseSamp, PhaseInc: in bit_vector (5 downto 1);

 Gain: in bit_vector (4 downto 1);

 ODVin, PSVin: in bit;

 OtherBinDataSIN, OtherBinDataCOS: in bit_vector (17 downto
1);

 Q, I: out bit_vector (17 downto 1);

 ODVout, PSVout: out bit;

 DRFM: out bit_vector (5 downto 1);

 CLK: in bit);

end OneBin;

architecture OneBin of OneBin is

component Register5 is

 port (CLK, LD, RESET: in bit; D5: in bit_vector (4 downto 0);

 Q5: inout bit_vector (4 downto 0); Q5not: out bit_vector (4
downto 0));

end component;

component Register8 is

 port (CLK, LD, RESET: in bit; D8: in bit_vector (7 downto 0);

80

 Q8: inout bit_vector (7 downto 0); Q8not: out bit_vector (7
downto 0));

end component;

component Register13 is

 port (CLK, LD, RESET: in bit; D13: in bit_vector (12 downto 0);

 Q13: inout bit_vector (12 downto 0); Q13not: out bit_vector (12
downto 0));

end component;

component Register17 is

 port (CLK, LD, RESET: in bit; D17: in bit_vector (16 downto 0);

 Q17: inout bit_vector (16 downto 0); Q17not: out bit_vector (16
downto 0));

end component;

component Adder5 is

 port (A, B: in bit_vector(4 downto 0); Ci: in bit;

 S: out bit_vector(4 downto 0); Co: out bit);

end component;

component Adder16 is

 port (A, B: in bit_vector(15 downto 0); Ci, OVin: in bit;

 S: out bit_vector(16 downto 0); Co: out bit);

end component;

component ROMLUT is

port (SIN, COS:out bit_vector(1 to 8);

 FIVEBITS:in bit_vector(1 to 5));

end component;

component GainShifter is

 port (Control:in bit_vector(4 downto 1); Data: in bit_vector(8
downto 1);

 Output: out bit_vector(13 downto 1));

end component;

component ControlLogic is

 port (ODVin, URB, PSVin, CLK, OPER: in bit;

 CLR13, CLR17, ODVout, PSVout: out bit);

end component;

signal
QOutReg1,QNotOutReg1,QOutReg2,QNotOutReg2,QOutReg3,QNotOutReg3,QOutReg4
,QNotOutReg4,

 QOutReg5,QNotOutReg5,QOutReg6,QNotOutReg6,OutAdd1: bit_vector (5
downto 1);

81

signal QOutReg7,QNotOutReg7,QOutReg8,QNotOutReg8, LUTSIN, LUTCOS:
bit_vector (8 downto 1);

signal QOutReg9,QNotOutReg9,QOutReg10,QNotOutReg10, OutShiftSIN, Out-
ShiftCOS: bit_vector (13 downto 1);

signal
QOutReg11,QNotOutReg11,QOutReg12,QNotOutReg12,QOutReg13,QNotOutReg13,QO
utReg14,QNotOutReg14,

OutAdd2, OutAdd3: bit_vector (17 downto 1);

signal InputAdder2, InputAdder3: bit_vector (16 downto 1);

signal OPER, URB, LD, CLR5, CLR8, CLR13, CLR17, Ci, Co1, Co2, Co3, Re-
set_Inact: bit;

signal InReg5: bit_vector (5 downto 1);

begin

 OPER <='1';

 URB <= '1';

 CLR5 <= '0';

 CLR8 <= '0';

 Ci <= '0';

 LD <= '1';

 Reset_Inact <= '0';

 InReg5(4 downto 1) <= Gain (4 downto 1);

 InReg5(5) <= URB;

 Reg1: Register5 port map(CLK, LD, CLR5, PhaseInc(5 downto 1),
QOutReg1(5 downto 1), QNotOutReg1(5 downto 1));

 Reg2: Register5 port map(CLK, LD, CLR5, QOutReg1(5 downto 1),
QOutReg2(5 downto 1), QNotOutReg2(5 downto 1));

 Reg3: Register5 port map(CLK, LD, CLR5, PhaseSamp(5 downto 1),
QOutReg3(5 downto 1), QNotOutReg3(5 downto 1));

 Add1: Adder5 port map (QOutReg2,QOutReg3, Ci, OutAdd1(5 downto
1), Co1);

 Reg4: Register5 port map(CLK, LD, CLR5, OutAdd1(5 downto 1),
QOutReg4(5 downto 1), QNotOutReg4(5 downto 1));

 LUT: ROMLUT port map (LUTSIN(8 downto 1),LUTCOS(8 downto
1),QOutReg4(5 downto 1));

 Reg5: Register5 port map(CLK, LD, CLR5, InReg5(5 downto 1),
QOutReg5(5 downto 1), QNotOutReg5(5 downto 1));

 Reg6: Register5 port map(CLK, LD, CLR5, QOutReg5(5 downto 1),
QOutReg6(5 downto 1), QNotOutReg6(5 downto 1));

 Reg7: Register8 port map(CLK, LD, CLR8, LUTSIN(8 downto 1),
QOutReg7(8 downto 1), QNotOutReg7(8 downto 1));

 Reg8: Register8 port map(CLK, LD, CLR8, LUTCOS(8 downto 1),
QOutReg8(8 downto 1), QNotOutReg8(8 downto 1));

82

 Shift1: GainShifter port map (QOutReg6(4 downto 1),QOutReg7(8
downto 1),OutShiftSIN(13 downto 1));

 Shift2: GainShifter port map (QOutReg6(4 downto 1),QOutReg8(8
downto 1),OutShiftCOS(13 downto 1));

 Reg9: Register13 port map(CLK, LD, CLR13, OutShiftSIN(13 downto
1), QOutReg9(13 downto 1), QNotOutReg9(13 downto 1));

 Reg10: Register13 port map(CLK, LD, CLR13, OutShiftCOS(13 downto
1), QOutReg10(13 downto 1), QNotOutReg10(13 downto 1));

 Reg11: Register17 port map(CLK, LD, Reset_Inact, OtherBinData-
SIN(17 downto 1), QOutReg11(17 downto 1), QNotOutReg11(17 downto 1));

 Reg12: Register17 port map(CLK, LD, Reset_Inact, OtherBinData-
COS(17 downto 1), QOutReg12(17 downto 1), QNotOutReg12(17 downto 1));

 Add2: Adder16 port map (InputAdder2, QOutReg11(16 downto 1), Ci,
QOutReg11(17), OutAdd2(17 downto 1),Co2);

 Add3: Adder16 port map (InputAdder3, QOutReg12(16 downto 1), Ci,
QOutReg12(17), OutAdd3(17 downto 1),Co3);

 Reg13: Register17 port map(CLK, LD, CLR17, OutAdd2(17 downto 1),
QOutReg13(17 downto 1), QNotOutReg13(17 downto 1));

 Reg14: Register17 port map(CLK, LD, CLR17, OutAdd3(17 downto 1),
QOutReg14(17 downto 1), QNotOutReg14(17 downto 1));

 Control: ControlLogic port map (ODVin, URB, PSVin, CLK, OPER,
CLR13, CLR17, ODVout, PSVout);

 InputAdder2(13 downto 1) <= QOutReg9(13 downto 1);

 InputAdder2(14) <= QOutReg9(13);

 InputAdder2(15) <= QOutReg9(13);

 InputAdder2(16) <= QOutReg9(13);

 InputAdder3(13 downto 1) <= QOutReg10(13 downto 1);

 InputAdder3(14) <= QOutReg10(13);

 InputAdder3(15) <= QOutReg10(13);

 InputAdder3(16) <= QOutReg10(13);

 DRFM(5 downto 1) <= QOutReg3(5 downto 1);

 Q <= QOutReg13;

 I <= QOutReg14;

end OneBin;

entity FourBin is

 port (Data, Signals: in bit_vector (63 downto 0);

 Output:out bit_vector (63 downto 0); CLK: in bit);

end FourBin;

83

architecture FourBin of FourBin is

component OneBin is

 port (PhaseSamp, PhaseInc: in bit_vector (5 downto 1);

 Gain: in bit_vector (4 downto 1);

 ODVin, PSVin: in bit;

 OtherBinDataSIN, OtherBinDataCOS: in bit_vector (17 downto
1);

 Q, I: out bit_vector (17 downto 1);

 ODVout, PSVout: out bit;

 DRFM: out bit_vector (5 downto 1);

 CLK: in bit);

end component;

signal Q, I, Q1,I1,Q2,I2,Q3,I3, OtherBinDataSIN, OtherBinDataCOS:
bit_vector (17 downto 1);

signal DRFM0, DRFM1,DRFM2,DRFM3: bit_vector (5 downto 1);

signal PSVin, ODVin, ODVout0, ODVout1, ODVout2, ODVout3, PSVout0,
PSVout1, PSVout2, PSVout3: bit;

signal Gain0, Gain1, Gain2, Gain3: bit_vector (4 downto 1);

signal PhaseInc0, PhaseInc1, PhaseInc2, PhaseInc3, PhaseSamp:
bit_vector (5 downto 1);

signal URB: bit_vector (2 downto 1);

begin -- BIN0 is the primary output

--Data: Bit 63-41 not used,

--40-37 ampscal[0], 36-33 ampscal[1], 32-29 ampscal[2], 28-25 amp-
scal[3],

--24-20 phzincdat[0], 19-15 phzincdat[1],14-10 phzincdat[2], 9-5
phzincdat[3], 4-0 phasesample

--Signals:Bits 63-38 not used,

--37 PSVin, 36 ODVin, 35-34 URB,

--33-17 OtherBinDataSIN,16-0 OtherBinDataCOS

Gain0 <= Data(40 downto 37);

Gain1 <= Data(36 downto 33);

84

Gain2 <= Data(32 downto 29);

Gain3 <= Data(28 downto 25);

PhaseInc0 <= Data(24 downto 20);

PhaseInc1 <= Data(19 downto 15);

PhaseInc2 <= Data(14 downto 10);

PhaseInc3 <= Data(9 downto 5);

PhaseSamp <= Data(4 downto 0);

PSVin <= Signals(37);

ODVin <= Signals(36);

URB <= Signals(35 downto 34);

OtherBinDataSIN <= Signals(33 downto 17);

OtherBinDataCOS <= Signals(16 downto 0);

BIN0: OneBin port map (DRFM1, PhaseInc0, Gain0, ODVout1, PSVout1,
Q1, I1, Q, I, ODVout0, PSVout0, DRFM0, CLK);

BIN1: OneBin port map (DRFM2, PhaseInc1, Gain1, ODVout2, PSVout2, Q2,
I2, Q1, I1, ODVout1, PSVout1, DRFM1, CLK);

BIN2: OneBin port map (DRFM3, PhaseInc2, Gain2, ODVout3, PSVout3, Q3,
I3, Q2, I2, ODVout2, PSVout2, DRFM2, CLK);

BIN3: OneBin port map (PhaseSamp, PhaseInc3, Gain3, ODVin, PSVin,
OtherBinDataSIN, OtherBinDataCOS, Q3, I3, ODVout3, PSVout3, DRFM3,
CLK);

Output(40)<=PSVout0;

Output(39)<=ODVout0;

Output(38 downto 22)<=Q;

Output(21 downto 5)<=I;

Output(4 downto 0)<=DRFM0;

Output(63 downto 41)<="00000000000000000000000";

end FourBin;

B. MAKEFILE

User defines FILES, MAPFILES, and BIN here

FILES = main.c

MAPFILES = FourBinS.mc

BIN = FourBinTest

85

User defined macros info supplied here

(Leave commented out if not used)

MACROS = my_macro/fourbin.vhd

MY_BLKBOX = my_macro/fourbin.box

MY_NGO_DIR = my_macro

MY_INFO = my_macro/fourbin.info

User supplied MCC and MFTN flags

MY_MCCFLAGS =

MY_MFTNFLAGS =

User supplied flags for C & Fortran compilers

CC = icc # icc for Intel cc for Gnu

FC = ifc # ifc for Intel f77 for Gnu

LD = ifc # ifc for Intel cc for Gnu

MY_CFLAGS =

MY_FFLAGS =

No modifications are required below

MAKIN ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make

include $(MAKIN)

C. MACRO INFO FILE

BEGIN_DEF "Four_Bin"

 MACRO = "FourBin";

 STATEFUL = NO;

 EXTERNAL = NO;

 PIPELINED = YES;

 LATENCY = 9;

 INPUTS = 2:

 I0 = INT 64 BITS (Data[63:0])

86

 I1 = INT 64 BITS (Signals[63:0])

 ;

 OUTPUTS = 1:

 O0 = INT 64 BITS (Output[63:0])

 ;

 IN_SIGNAL : 1 BITS "CLK"="CLOCK";

END_DEF

D. MACRO BLACKBOX FILE

module FourBin (Data, Signals, Output, CLK) /* synthesis syn_black_box
*/ ;

 input [63:0] Data;

 input [63:0] Signals;

 output [63:0] Output;

 input CLK;

endmodule

E. C DRIVER PROGRAM

/* main.c */

#include <stdio.h>

#include <sys/types.h>

#include <libmap.h>

#define SAMPLE_MAX 500000 /* Maximum number of phase samples. */

#define PADDING 5 /* number of padding sets before and after the sam-
ples */

void FourBinS();

void *Cache_Aligned_Allocate();

void Cache_Aligned_Free();

int main () {

 int i, nmap, mapnum, numofsamps, nbytes;

87

 short phzsampdat[SAMPLE_MAX];

 FILE *fileptr;

 long I0, Q0, OtherBinDataSIN, OtherBinDataCOS;

 char phzincdat[4], ampscaldat[4];

 char PSVin, ODVin, ODVout0, PSVout0, DRFM0, binnumber, URB;

 long long temp, binprogram;

 long long* dataa;

 long long* datab;

 long long* datac;

/* Timing variables. */

 double tstart, tend, tcume, ttotal;

 extern double second();

/* initialization */

 tstart = second();

 mapnum = 0;

 nmap = 1;

 OtherBinDataSIN=0;

 OtherBinDataCOS=0;

 ODVin=0;

 numofsamps=0;

/* Read in phase increment values. */

 if ((fileptr = fopen("datafiles/phzinc.txt", "r")) == NULL)

 fprintf(stderr, "\n\nTERMINAL FAULT: File phzinc.txt not
found.\n\n");

 binnumber = 0;

 while (fscanf(fileptr, "%x", &phzincdat[binnumber]) != EOF)

 {

 binnumber++;

 }

 fclose(fileptr);

/* Read in amplitude scaling values */

 if ((fileptr = fopen("datafiles/ampscal.txt", "r")) == NULL)

 fprintf(stderr, "\n\nTERMINAL FAULT: File ampscal.txt not
found.\n\n");

88

 binnumber = 0;

 while (fscanf(fileptr, "%x", &scaldat[binnumber]) != EOF)

 {

 binnumber++;

 }

 fclose(fileptr);

/* Read in pulse phase samples */

 if ((fileptr = fopen("datafiles/phzsamp.txt", "r")) == NULL)

 fprintf(stderr, "\n\nTERMINAL FAULT: File phzsamp.txt not
found.\n\n");

 numofsamps = 0;

 while (fscanf(fileptr, "%x", &phzsampdat[numofsamps]) != EOF)

 {

 numofsamps++;

 }

 fclose(fileptr);

 tend = second();

 tcume = tend - tstart;

 ttotal = tcume;

 printf ("\n Number of input samples: %d", numofsamps);

 printf ("\n Time for disk access of input data: %19.10f", tcume);

 tstart = second();

 nbytes = (((numofsamps+PADDING*2+3)/4)*4)*8;

 dataa=Cache_Aligned_Allocate(nbytes);

 datab=Cache_Aligned_Allocate(nbytes);

 datac=Cache_Aligned_Allocate(nbytes);

 tend = second();

 tcume = tend - tstart;

 ttotal = ttotal + tcume;

 printf ("\n Time to allocate the data caches for the MAP:
%19.10f", tcume);

 tstart = second();

/* pack the data as follows:

89

Data: Bit 63-41 not used,

 40-37 ampscal[0], 36-33 ampscal[1], 32-29 ampscal[2], 28-25 amp-
scal[3],

 24-20 phzincdat[0], 19-15 phzincdat[1],14-10 phzincdat[2], 9-5
phzincdat[3], 4-0 phzsampdat

Signals:Bits 63-38 not used,

 37 PSVin, 36 ODVin, 35-34 URB,

 33-17 OtherBinDataSIN,16-0 OtherBinDataCOS

 pad the data with sets of zero inputs before and after the real
data */

 temp=0;

 temp=((long long) ampscaldat[0] & 0xFLL);

 temp=temp<<4 | ((long long) ampscaldat[1] & 0xFLL);

 temp=temp<<4 | ((long long) ampscaldat[2] & 0xFLL);

 temp=temp<<4 | ((long long) ampscaldat[3] & 0xFLL);

 temp=temp<<5 | ((long long) phzincdat[0] & 0x1FLL);

 temp=temp<<5 | ((long long) phzincdat[1] & 0x1FLL);

 temp=temp<<5 | ((long long) phzincdat[2] & 0x1FLL);

 binprogram=temp<<5 | ((long long) phzincdat[3] & 0x1FLL);

 for (i=0; i<PADDING; i++){

 dataa[i]=binprogram <<5;

 dataa[i+numofsamps+PADDING]=binprogram <<5;

 datab[i]=0;

 datab[i+numofsamps+PADDING]=0;

 }

 PSVin=1;

 URB=3;/*use all 4 rangebins (macro currently ignores this)*/

 for (i = 0; i < numofsamps; i++) {

 dataa[i+PADDING]=binprogram<<5 | ((long long) phzsampdat[i]
& 0x1FLL);

 temp=0;

 temp=((long long) PSVin & 0x1LL);

 temp=temp<<1 | ((long long) ODVin & 0x1LL);

 temp=temp<<2 | ((long long) URB & 0x3LL);

 temp=temp<<17 | ((long long) OtherBinDataSIN & 0x1FFFFLL);

 datab[i+PADDING]=temp<<17 | ((long long) OtherBinDataCOS &
0x1FFFFLL);

90

 }

 tend = second();

 tcume = tend - tstart;

 ttotal = ttotal + tcume;

 printf ("\n Time to pack the data for transfer to MAP: %19.10f",
tcume);

 tstart = second();

/* allocate map to this problem */

 if (map_allocate (nmap)) {

 fprintf (stdout, "Map allocation failed.\n");

 exit (1);

 }

 tend = second();

 tcume = tend - tstart;

 ttotal = ttotal + tcume;

 printf ("\n Time for MAP allocation: %19.10f", tcume);

 tstart = second();

/* call compute */

 FourBinS (numofsamps+PADDING*2, dataa, datab, datac, mapnum);

 tend = second();

 tcume = tend - tstart;

 ttotal = ttotal + tcume;

 printf ("\n Time for MAP call: %19.10f", tcume);

 tstart = second();

/* Open output file for writing. */

 if ((fileptr = fopen("datafiles/IandQout.txt", "w")) == NULL)

 fprintf(stderr, "\n\nTERMINAL FAULT: File
IandQout.txt cannot be written.\n\n");

/* put headers in output file */

 fprintf(fileptr, "Iout Qout ODVout PSVout DRFM\n");

 fprintf(fileptr, "----- ----- ------ ------ -----\n");

/* unpack the results and send to output*/

 for (i = 0; i < numofsamps+PADDING*2; i++) {

91

 DRFM0=datac[i] & 0x1FLL;

 I0=datac[i]>>5 & 0x1FFFFLL;

 Q0=datac[i]>>22 & 0x1FFFFLL;

 ODVout0=datac[i]>>39 & 0x1LL;

 PSVout0=datac[i]>>40 & 0x1LL;

 fprintf(fileptr, "%05X %05X %01X %01X %02X\n",
I0, Q0, ODVout0, PSVout0, DRFM0);

 }

 fclose (fileptr);

 tend = second();

 tcume = tend - tstart;

 ttotal = ttotal + tcume;

 printf ("\n Time to unpack results and send to output file:
%19.10f", tcume);

 tstart = second();

/* free the map */

 if (map_free (nmap)) {

 printf ("Map deallocation failed. \n");

 exit (1);

 }

 tend = second();

 tcume = tend - tstart;

 ttotal = ttotal + tcume;

 printf ("\n Time to free the MAP: %19.10f", tcume);

 tstart = second();

 Cache_Aligned_Free((char *)dataa);

 Cache_Aligned_Free((char *)datab);

 Cache_Aligned_Free((char *)datac);

 tend = second();

 tcume = tend - tstart;

 ttotal = ttotal + tcume;

 printf ("\n Time to free the data arrays: %19.10f", tcume);

 printf ("\n Total Time: %19.10f\n\n", ttotal);

}

92

F. MAP CODE FILE

/* FourBinS.mc */

#include <libmap.h>

#define IBANK MAX_OBM_SIZE

void FourBinS (int n, long long a[], long long b[], long long c[], int
mapno)

 {

 struct {

 long long al[IBANK];

 } banka;

 struct {

 long long bl[IBANK];

 } bankb;

 struct {

 long long cl[IBANK];

 } bankc;

 long long *al = banka.al;

 long long *bl = bankb.bl;

 long long *cl = bankc.cl;

 int i, nbytes;

 /* nbytes = n*8;*/

 nbytes = (((n+3)/4)*4)*8;

 cm2obm_a(al, a, nbytes);

 wait_server_a();

 cm2obm_b (bl, b, nbytes);

 wait_server_b();

 for (i = 0; i < n; i++) {

 Four_Bin(al[i], bl[i], &cl[i]);

 }

 obm2cm_c (c, cl, nbytes);

 wait_server_c();

 }

93

G. SAMPLE PHASE SAMPLE INPUT FILE

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

H. SAMPLE RANGE BIN GAIN INPUT FILE

2

1

94

2

1

I. SAMPLE SCREEN OUTPUT

Number of input samples: 32

 Time for disk access of input data: 0.0002677690

 Time to allocate the data caches for the MAP: 0.0000318932

 Time to pack the data for transfer to MAP: 0.0000015922

 Time for MAP allocation: 0.5351942658

 Time for MAP call: 0.0960569127

 Time to unpack results and send to output file: 0.0005680144

 Time to free the MAP: 1.0062198973

 Time to free the data arrays: 0.0000037104

 Total Time: 1.6383440550

J. SAMPLE OUTPUT DATA FILE

Iout Qout ODVout PSVout DRFM

----- ----- ------ ------ -----

00000 00000 0 1 00

00000 00000 0 1 01

00000 00000 0 1 02

00000 00000 0 1 03

0000F 0FFFC 1 1 04

00007 0FFFE 1 1 05

00016 0FFFB 1 1 06

0000E 0FFFF 1 1 07

0000E 00001 1 1 08

0000D 00005 1 1 09

0000B 00007 1 1 0A

0000A 0000A 1 1 0B

00007 0000C 1 1 0C

00005 0000D 1 1 0D

00002 0000E 1 1 0E

0FFFE 0000E 1 1 0F

0FFFB 0000E 1 1 10

0FFF7 0000D 1 1 11

0FFF5 0000B 1 1 12

0FFF2 0000A 1 1 13

95

0FFF0 00007 1 1 14

0FFEF 00005 1 1 15

0FFEE 00002 1 1 16

0FFEE 0FFFE 1 1 17

0FFEE 0FFFB 1 1 18

0FFEF 0FFF7 1 1 19

0FFF1 0FFF5 1 1 1A

0FFF2 0FFF2 1 1 1B

0FFF6 0FFF0 1 1 1C

0FFF8 0FFEF 1 1 1D

0FFFB 0FFEE 1 1 1E

0FFFF 0FFEE 1 1 1F

00001 0FFEE 1 0 00

00005 0FFEF 1 0 00

00007 0FFF1 1 0 00

0000A 0FFF2 1 0 00

0FFFD 0FFFA 1 0 00

00006 0FFFA 1 0 00

0FFF8 00000 1 0 00

00000 00000 0 0 00

00000 00000 0 0 00

00000 00000 0 0 00

K. SAMPLE RANGE BIN PHASE ROTATION INPUT FILE

1F

11

1F

11

96

THIS PAGE INTENTIONALLY LEFT BLANK

97

APPENDIX D

This appendix contains the raw data collected from the

three data sources. The data was edited for format and

presentation only by merging multiple data files and screen

outputs into single text files.

A. SRC-6E MACRO DATA

 Number of input samples: 32

 Time for disk access of input data: 0.0002677690

 Time to allocate the data caches for the MAP: 0.0000318932

 Time to pack the data for transfer to MAP: 0.0000015922

 Time for MAP allocation: 0.5351942658

 Time for MAP call: 0.0960569127

 Time to unpack results and send to output file: 0.0005680144

 Time to free the MAP: 1.0062198973

 Time to free the data arrays: 0.0000037104

 Total Time: 1.6383440550

 Number of input samples: 32

 Time for disk access of input data: 0.0002689050

 Time to allocate the data caches for the MAP: 0.0000345652

 Time to pack the data for transfer to MAP: 0.0000015071

 Time for MAP allocation: 0.5559181052

 Time for MAP call: 0.0958363668

 Time to unpack results and send to output file: 0.0003943340

 Time to free the MAP: 1.0063609813

 Time to free the data arrays: 0.0000037825

 Total Time: 1.6588185471

 Number of input samples: 32

 Time for disk access of input data: 0.0002782845

 Time to allocate the data caches for the MAP: 0.0000353730

 Time to pack the data for transfer to MAP: 0.0000015228

 Time for MAP allocation: 0.5466191977

 Time for MAP call: 0.0957191453

 Time to unpack results and send to output file: 0.0003934382

98

 Time to free the MAP: 1.0064690704

 Time to free the data arrays: 0.0000035836

 Total Time: 1.6495196156

 Number of input samples: 32

 Time for disk access of input data: 0.0002708402

 Time to allocate the data caches for the MAP: 0.0000354869

 Time to pack the data for transfer to MAP: 0.0000013993

 Time for MAP allocation: 0.5923142628

 Time for MAP call: 0.0958587045

 Time to unpack results and send to output file: 0.0003693907

 Time to free the MAP: 1.0066480303

 Time to free the data arrays: 0.0000032406

 Total Time: 1.6955013552

 Number of input samples: 32

 Time for disk access of input data: 0.0002633170

 Time to allocate the data caches for the MAP: 0.0000347017

 Time to pack the data for transfer to MAP: 0.0000012340

 Time for MAP allocation: 0.5432007360

 Time for MAP call: 0.0957816167

 Time to unpack results and send to output file: 0.0003904607

 Time to free the MAP: 1.0066382354

 Time to free the data arrays: 0.0000032465

 Total Time: 1.6463135479

 Number of input samples: 64

 Time for disk access of input data: 0.0003175845

 Time to allocate the data caches for the MAP: 0.0000341569

 Time to pack the data for transfer to MAP: 0.0000017385

 Time for MAP allocation: 0.5683862600

 Time for MAP call: 0.0956988467

 Time to unpack results and send to output file: 0.0004762942

 Time to free the MAP: 1.0063969221

 Time to free the data arrays: 0.0000034788

 Total Time: 1.6713152818

99

 Number of input samples: 64

 Time for disk access of input data: 0.0003063767

 Time to allocate the data caches for the MAP: 0.0000392713

 Time to pack the data for transfer to MAP: 0.0000017731

 Time for MAP allocation: 0.5590026660

 Time for MAP call: 0.0955597495

 Time to unpack results and send to output file: 0.0004758422

 Time to free the MAP: 1.0067611845

 Time to free the data arrays: 0.0000035916

 Total Time: 1.6621504548

 Number of input samples: 64

 Time for disk access of input data: 0.0002826070

 Time to allocate the data caches for the MAP: 0.0000367635

 Time to pack the data for transfer to MAP: 0.0000017988

 Time for MAP allocation: 0.5498394886

 Time for MAP call: 0.0957414989

 Time to unpack results and send to output file: 0.0004572148

 Time to free the MAP: 1.0064087044

 Time to free the data arrays: 0.0000038783

 Total Time: 1.6527719543

 Number of input samples: 64

 Time for disk access of input data: 0.0002825416

 Time to allocate the data caches for the MAP: 0.0000316966

 Time to pack the data for transfer to MAP: 0.0000017237

 Time for MAP allocation: 0.5604036079

 Time for MAP call: 0.0956780317

 Time to unpack results and send to output file: 0.0004765750

 Time to free the MAP: 1.0067241372

 Time to free the data arrays: 0.0000034452

 Total Time: 1.6636017589

 Number of input samples: 64

 Time for disk access of input data: 0.0002861433

 Time to allocate the data caches for the MAP: 0.0000339728

 Time to pack the data for transfer to MAP: 0.0000015644

100

 Time for MAP allocation: 0.5389705671

 Time for MAP call: 0.0957993332

 Time to unpack results and send to output file: 0.0004734413

 Time to free the MAP: 1.0063321409

 Time to free the data arrays: 0.0000034946

 Total Time: 1.6419006575

 Number of input samples: 128

 Time for disk access of input data: 0.0003499791

 Time to allocate the data caches for the MAP: 0.0000348569

 Time to pack the data for transfer to MAP: 0.0000021587

 Time for MAP allocation: 0.5492326826

 Time for MAP call: 0.0956268387

 Time to unpack results and send to output file: 0.0006270098

 Time to free the MAP: 1.0063932453

 Time to free the data arrays: 0.0000038566

 Total Time: 1.6522706278

 Number of input samples: 128

 Time for disk access of input data: 0.0003540977

 Time to allocate the data caches for the MAP: 0.0000365776

 Time to pack the data for transfer to MAP: 0.0000021408

 Time for MAP allocation: 0.5569221765

 Time for MAP call: 0.0958692052

 Time to unpack results and send to output file: 0.0006243340

 Time to free the MAP: 1.0060996530

 Time to free the data arrays: 0.0000032404

 Total Time: 1.6599114252

 Number of input samples: 128

 Time for disk access of input data: 0.0003482387

 Time to allocate the data caches for the MAP: 0.0000330829

 Time to pack the data for transfer to MAP: 0.0000027293

 Time for MAP allocation: 0.5580912070

 Time for MAP call: 0.0958268696

 Time to unpack results and send to output file: 0.0006249647

 Time to free the MAP: 1.0061637045

101

 Time to free the data arrays: 0.0000035729

 Total Time: 1.6610943696

 Number of input samples: 128

 Time for disk access of input data: 0.0003452869

 Time to allocate the data caches for the MAP: 0.0000329286

 Time to pack the data for transfer to MAP: 0.0000021903

 Time for MAP allocation: 0.5476320571

 Time for MAP call: 0.0957660111

 Time to unpack results and send to output file: 0.0006117751

 Time to free the MAP: 1.0065463808

 Time to free the data arrays: 0.0000031959

 Total Time: 1.6509398259

 Number of input samples: 128

 Time for disk access of input data: 0.0003497200

 Time to allocate the data caches for the MAP: 0.0000313107

 Time to pack the data for transfer to MAP: 0.0000022150

 Time for MAP allocation: 0.6261321505

 Time for MAP call: 0.0957161797

 Time to unpack results and send to output file: 0.0006258458

 Time to free the MAP: 1.0062361960

 Time to free the data arrays: 0.0000034363

 Total Time: 1.7290970540

 Number of input samples: 256

 Time for disk access of input data: 0.0004625537

 Time to allocate the data caches for the MAP: 0.0000414161

 Time to pack the data for transfer to MAP: 0.0000030873

 Time for MAP allocation: 0.5701080822

 Time for MAP call: 0.0957897472

 Time to unpack results and send to output file: 0.0009789201

 Time to free the MAP: 1.0057789229

 Time to free the data arrays: 0.0000029706

 Total Time: 1.6731657000

 Number of input samples: 256

102

 Time for disk access of input data: 0.0004759619

 Time to allocate the data caches for the MAP: 0.0000424247

 Time to pack the data for transfer to MAP: 0.0000031962

 Time for MAP allocation: 0.5605598434

 Time for MAP call: 0.0958398278

 Time to unpack results and send to output file: 0.0010340470

 Time to free the MAP: 1.0060577265

 Time to free the data arrays: 0.0000033858

 Total Time: 1.6640164134

 Number of input samples: 256

 Time for disk access of input data: 0.0004909334

 Time to allocate the data caches for the MAP: 0.0000418077

 Time to pack the data for transfer to MAP: 0.0000032721

 Time for MAP allocation: 0.5610595126

 Time for MAP call: 0.0957838385

 Time to unpack results and send to output file: 0.0010015783

 Time to free the MAP: 1.0060574814

 Time to free the data arrays: 0.0000032188

 Total Time: 1.6644416428

 Number of input samples: 256

 Time for disk access of input data: 0.0004558661

 Time to allocate the data caches for the MAP: 0.0000427304

 Time to pack the data for transfer to MAP: 0.0000030734

 Time for MAP allocation: 0.5659454288

 Time for MAP call: 0.0957831108

 Time to unpack results and send to output file: 0.0010010364

 Time to free the MAP: 1.0060677676

 Time to free the data arrays: 0.0000037963

 Total Time: 1.6693028099

 Number of input samples: 256

 Time for disk access of input data: 0.0004885800

 Time to allocate the data caches for the MAP: 0.0000416851

 Time to pack the data for transfer to MAP: 0.0000031890

 Time for MAP allocation: 0.5511499354

103

 Time for MAP call: 0.0961975577

 Time to unpack results and send to output file: 0.0010007792

 Time to free the MAP: 1.0055322002

 Time to free the data arrays: 0.0000034818

 Total Time: 1.6544174084

 Number of input samples: 512

 Time for disk access of input data: 0.0006995983

 Time to allocate the data caches for the MAP: 0.0000495407

 Time to pack the data for transfer to MAP: 0.0000059341

 Time for MAP allocation: 0.5635743956

 Time for MAP call: 0.0958592651

 Time to unpack results and send to output file: 0.0017114796

 Time to free the MAP: 1.0053390195

 Time to free the data arrays: 0.0000028657

 Total Time: 1.6672420986

 Number of input samples: 512

 Time for disk access of input data: 0.0007183850

 Time to allocate the data caches for the MAP: 0.0000513633

 Time to pack the data for transfer to MAP: 0.0000054903

 Time for MAP allocation: 0.5580191022

 Time for MAP call: 0.0958093556

 Time to unpack results and send to output file: 0.0017153421

 Time to free the MAP: 1.0050138898

 Time to free the data arrays: 0.0000028241

 Total Time: 1.6613357524

 Number of input samples: 512

 Time for disk access of input data: 0.0007295769

 Time to allocate the data caches for the MAP: 0.0000498671

 Time to pack the data for transfer to MAP: 0.0000053103

 Time for MAP allocation: 0.5441085579

 Time for MAP call: 0.0957256651

 Time to unpack results and send to output file: 0.0017012210

 Time to free the MAP: 1.0051159665

 Time to free the data arrays: 0.0000031229

104

 Total Time: 1.6474392877

 Number of input samples: 512

 Time for disk access of input data: 0.0007316072

 Time to allocate the data caches for the MAP: 0.0000485241

 Time to pack the data for transfer to MAP: 0.0000066572

 Time for MAP allocation: 0.5413774263

 Time for MAP call: 0.0957333604

 Time to unpack results and send to output file: 0.0017187052

 Time to free the MAP: 1.0052396681

 Time to free the data arrays: 0.0000030271

 Total Time: 1.6448589756

 Number of input samples: 512

 Time for disk access of input data: 0.0007073195

 Time to allocate the data caches for the MAP: 0.0000512257

 Time to pack the data for transfer to MAP: 0.0000051294

 Time for MAP allocation: 0.5688409651

 Time for MAP call: 0.0961722968

 Time to unpack results and send to output file: 0.0017124555

 Time to free the MAP: 1.0049554719

 Time to free the data arrays: 0.0000037834

 Total Time: 1.6724486473

 Number of input samples: 1024

 Time for disk access of input data: 0.0011598321

 Time to allocate the data caches for the MAP: 0.0000747768

 Time to pack the data for transfer to MAP: 0.0000107293

 Time for MAP allocation: 0.5627898064

 Time for MAP call: 0.0958103127

 Time to unpack results and send to output file: 0.0031125588

 Time to free the MAP: 1.0039292726

 Time to free the data arrays: 0.0000034244

 Total Time: 1.6668907131

 Number of input samples: 1024

 Time for disk access of input data: 0.0011944289

105

 Time to allocate the data caches for the MAP: 0.0000739026

 Time to pack the data for transfer to MAP: 0.0000107085

 Time for MAP allocation: 0.5614359006

 Time for MAP call: 0.0958402471

 Time to unpack results and send to output file: 0.0031293658

 Time to free the MAP: 1.0033827050

 Time to free the data arrays: 0.0000034058

 Total Time: 1.6650706644

 Number of input samples: 1024

 Time for disk access of input data: 0.0012244619

 Time to allocate the data caches for the MAP: 0.0000784731

 Time to pack the data for transfer to MAP: 0.0000101171

 Time for MAP allocation: 0.5669450610

 Time for MAP call: 0.0956240124

 Time to unpack results and send to output file: 0.0031523541

 Time to free the MAP: 1.0037887276

 Time to free the data arrays: 0.0000034323

 Total Time: 1.6708266397

 Number of input samples: 1024

 Time for disk access of input data: 0.0011605509

 Time to allocate the data caches for the MAP: 0.0000752337

 Time to pack the data for transfer to MAP: 0.0000101676

 Time for MAP allocation: 0.6236788962

 Time for MAP call: 0.0958688937

 Time to unpack results and send to output file: 0.0031311201

 Time to free the MAP: 1.0035382028

 Time to free the data arrays: 0.0000033830

 Total Time: 1.7274664481

 Number of input samples: 1024

 Time for disk access of input data: 0.0011683335

 Time to allocate the data caches for the MAP: 0.0000749340

 Time to pack the data for transfer to MAP: 0.0000102182

 Time for MAP allocation: 0.5578285100

 Time for MAP call: 0.0958067626

106

 Time to unpack results and send to output file: 0.0031323314

 Time to free the MAP: 1.0037003675

 Time to free the data arrays: 0.0000037855

 Total Time: 1.6617252427

 Number of input samples: 2048

 Time for disk access of input data: 0.0021121742

 Time to allocate the data caches for the MAP: 0.0001252035

 Time to pack the data for transfer to MAP: 0.0000210125

 Time for MAP allocation: 0.5629239089

 Time for MAP call: 0.0960486161

 Time to unpack results and send to output file: 0.0059072306

 Time to free the MAP: 1.0108930274

 Time to free the data arrays: 0.0000037240

 Total Time: 1.6780348972

 Number of input samples: 2048

 Time for disk access of input data: 0.0021581480

 Time to allocate the data caches for the MAP: 0.0001240052

 Time to pack the data for transfer to MAP: 0.0000198348

 Time for MAP allocation: 0.5655415718

 Time for MAP call: 0.0959882690

 Time to unpack results and send to output file: 0.0059822606

 Time to free the MAP: 1.0108668191

 Time to free the data arrays: 0.0000034374

 Total Time: 1.6806843458

 Number of input samples: 2048

 Time for disk access of input data: 0.0020997350

 Time to allocate the data caches for the MAP: 0.0001187363

 Time to pack the data for transfer to MAP: 0.0000202602

 Time for MAP allocation: 0.5527371586

 Time for MAP call: 0.0959806834

 Time to unpack results and send to output file: 0.0060287457

 Time to free the MAP: 1.0008449403

 Time to free the data arrays: 0.0000035115

 Total Time: 1.6578337709

107

 Number of input samples: 2048

 Time for disk access of input data: 0.0021319420

 Time to allocate the data caches for the MAP: 0.0001291689

 Time to pack the data for transfer to MAP: 0.0000213944

 Time for MAP allocation: 0.5652251829

 Time for MAP call: 0.0962193980

 Time to unpack results and send to output file: 0.0060068518

 Time to free the MAP: 1.0103367549

 Time to free the data arrays: 0.0000033099

 Total Time: 1.6800740027

 Number of input samples: 2048

 Time for disk access of input data: 0.0021120040

 Time to allocate the data caches for the MAP: 0.0001270320

 Time to pack the data for transfer to MAP: 0.0000202671

 Time for MAP allocation: 0.6232019155

 Time for MAP call: 0.0960557450

 Time to unpack results and send to output file: 0.0059984444

 Time to free the MAP: 1.0108003173

 Time to free the data arrays: 0.0000030409

 Total Time: 1.7383187662

 Number of input samples: 4096

 Time for disk access of input data: 0.0039900679

 Time to allocate the data caches for the MAP: 0.0002096794

 Time to pack the data for transfer to MAP: 0.0000459382

 Time for MAP allocation: 0.5496688402

 Time for MAP call: 0.0962074068

 Time to unpack results and send to output file: 0.0116166790

 Time to free the MAP: 1.0047562273

 Time to free the data arrays: 0.0000039219

 Total Time: 1.6664987608

 Number of input samples: 4096

 Time for disk access of input data: 0.0039976444

 Time to allocate the data caches for the MAP: 0.0002221994

108

 Time to pack the data for transfer to MAP: 0.0000597746

 Time for MAP allocation: 0.5453757423

 Time for MAP call: 0.0963799618

 Time to unpack results and send to output file: 0.0116735057

 Time to free the MAP: 1.0045205898

 Time to free the data arrays: 0.0000045923

 Total Time: 1.6622340104

 Number of input samples: 4096

 Time for disk access of input data: 0.0040123798

 Time to allocate the data caches for the MAP: 0.0002263054

 Time to pack the data for transfer to MAP: 0.0000590547

 Time for MAP allocation: 0.5631937416

 Time for MAP call: 0.0962763444

 Time to unpack results and send to output file: 0.0119604370

 Time to free the MAP: 1.0046578696

 Time to free the data arrays: 0.0000045894

 Total Time: 1.6803907219

 Number of input samples: 4096

 Time for disk access of input data: 0.0039810075

 Time to allocate the data caches for the MAP: 0.0002196887

 Time to pack the data for transfer to MAP: 0.0000460430

 Time for MAP allocation: 0.5485791007

 Time for MAP call: 0.0962252609

 Time to unpack results and send to output file: 0.0116839264

 Time to free the MAP: 1.0046424461

 Time to free the data arrays: 0.0000035757

 Total Time: 1.6653810490

 Number of input samples: 4096

 Time for disk access of input data: 0.0040224830

 Time to allocate the data caches for the MAP: 0.0002064347

 Time to pack the data for transfer to MAP: 0.0000547056

 Time for MAP allocation: 0.6224038432

 Time for MAP call: 0.0960545790

 Time to unpack results and send to output file: 0.0116945519

109

 Time to free the MAP: 1.0048462921

 Time to free the data arrays: 0.0000038892

 Total Time: 1.7392867787

 Number of input samples: 8192

 Time for disk access of input data: 0.0078223245

 Time to allocate the data caches for the MAP: 0.0004023044

 Time to pack the data for transfer to MAP: 0.0002119705

 Time for MAP allocation: 0.5812084946

 Time for MAP call: 0.0964297191

 Time to unpack results and send to output file: 0.0228781873

 Time to free the MAP: 1.0130009019

 Time to free the data arrays: 0.0000038685

 Total Time: 1.7219577708

 Number of input samples: 8192

 Time for disk access of input data: 0.0078307251

 Time to allocate the data caches for the MAP: 0.0004436297

 Time to pack the data for transfer to MAP: 0.0002067542

 Time for MAP allocation: 0.5730418858

 Time for MAP call: 0.0966391728

 Time to unpack results and send to output file: 0.0230338760

 Time to free the MAP: 1.0131350597

 Time to free the data arrays: 0.0000040277

 Total Time: 1.7143351309

 Number of input samples: 8192

 Time for disk access of input data: 0.0077393767

 Time to allocate the data caches for the MAP: 0.0004243039

 Time to pack the data for transfer to MAP: 0.0001817426

 Time for MAP allocation: 0.6185239698

 Time for MAP call: 0.0966174048

 Time to unpack results and send to output file: 0.0230480030

 Time to free the MAP: 1.0029756321

 Time to free the data arrays: 0.0000042630

 Total Time: 1.7495146959

110

 Number of input samples: 8192

 Time for disk access of input data: 0.0078371656

 Time to allocate the data caches for the MAP: 0.0004584440

 Time to pack the data for transfer to MAP: 0.0002532533

 Time for MAP allocation: 0.5599991367

 Time for MAP call: 0.0966641570

 Time to unpack results and send to output file: 0.0232095667

 Time to free the MAP: 1.0027152393

 Time to free the data arrays: 0.0000033759

 Total Time: 1.6911403385

 Number of input samples: 8192

 Time for disk access of input data: 0.0077986943

 Time to allocate the data caches for the MAP: 0.0004437948

 Time to pack the data for transfer to MAP: 0.0001976624

 Time for MAP allocation: 0.6172022498

 Time for MAP call: 0.0967147538

 Time to unpack results and send to output file: 0.0237511987

 Time to free the MAP: 1.0120747115

 Time to free the data arrays: 0.0000037410

 Total Time: 1.7581868063

 Number of input samples: 16384

 Time for disk access of input data: 0.0154911431

 Time to allocate the data caches for the MAP: 0.0011080426

 Time to pack the data for transfer to MAP: 0.0008457769

 Time for MAP allocation: 0.5440686744

 Time for MAP call: 0.0972487617

 Time to unpack results and send to output file: 0.0456674025

 Time to free the MAP: 1.0098512721

 Time to free the data arrays: 0.0001430044

 Total Time: 1.7144240776

 Number of input samples: 16384

 Time for disk access of input data: 0.0155376915

 Time to allocate the data caches for the MAP: 0.0010734378

 Time to pack the data for transfer to MAP: 0.0007945728

111

 Time for MAP allocation: 0.5509032889

 Time for MAP call: 0.0973605433

 Time to unpack results and send to output file: 0.0459777423

 Time to free the MAP: 1.0094799668

 Time to free the data arrays: 0.0001454507

 Total Time: 1.7212726941

 Number of input samples: 16384

 Time for disk access of input data: 0.0154718570

 Time to allocate the data caches for the MAP: 0.0010781133

 Time to pack the data for transfer to MAP: 0.0008486386

 Time for MAP allocation: 0.6051188154

 Time for MAP call: 0.0972983311

 Time to unpack results and send to output file: 0.0458111949

 Time to free the MAP: 1.0094288469

 Time to free the data arrays: 0.0001662607

 Total Time: 1.7752220580

 Number of input samples: 16384

 Time for disk access of input data: 0.0154333424

 Time to allocate the data caches for the MAP: 0.0011713841

 Time to pack the data for transfer to MAP: 0.0008559671

 Time for MAP allocation: 0.6519303209

 Time for MAP call: 0.0973521378

 Time to unpack results and send to output file: 0.0459583633

 Time to free the MAP: 1.0095304322

 Time to free the data arrays: 0.0001494944

 Total Time: 1.8223814423

 Number of input samples: 16384

 Time for disk access of input data: 0.0152250228

 Time to allocate the data caches for the MAP: 0.0011885736

 Time to pack the data for transfer to MAP: 0.0010387779

 Time for MAP allocation: 0.6485815154

 Time for MAP call: 0.0975391807

 Time to unpack results and send to output file: 0.0464225369

 Time to free the MAP: 1.0087604537

112

 Time to free the data arrays: 0.0001434464

 Total Time: 1.8188995075

 Number of input samples: 32768

 Time for disk access of input data: 0.0316404635

 Time to allocate the data caches for the MAP: 0.0034781572

 Time to pack the data for transfer to MAP: 0.0029248423

 Time for MAP allocation: 0.6252940828

 Time for MAP call: 0.0988847446

 Time to unpack results and send to output file: 0.0913046420

 Time to free the MAP: 1.0023308353

 Time to free the data arrays: 0.0002494756

 Total Time: 1.8561072433

 Number of input samples: 32768

 Time for disk access of input data: 0.0305634427

 Time to allocate the data caches for the MAP: 0.0022265891

 Time to pack the data for transfer to MAP: 0.0023904122

 Time for MAP allocation: 0.5508623337

 Time for MAP call: 0.0992578574

 Time to unpack results and send to output file: 0.0917728660

 Time to free the MAP: 1.0118414713

 Time to free the data arrays: 0.0002532977

 Total Time: 1.7891682702

 Number of input samples: 32768

 Time for disk access of input data: 0.0307901613

 Time to allocate the data caches for the MAP: 0.0022666832

 Time to pack the data for transfer to MAP: 0.0033268828

 Time for MAP allocation: 0.5559343584

 Time for MAP call: 0.0989380410

 Time to unpack results and send to output file: 0.0916615997

 Time to free the MAP: 1.0122256754

 Time to free the data arrays: 0.0002460956

 Total Time: 1.7953894975

 Number of input samples: 32768

113

 Time for disk access of input data: 0.0311453124

 Time to allocate the data caches for the MAP: 0.0022655370

 Time to pack the data for transfer to MAP: 0.0023452306

 Time for MAP allocation: 0.5423111092

 Time for MAP call: 0.0989094210

 Time to unpack results and send to output file: 0.0934043771

 Time to free the MAP: 1.0106256046

 Time to free the data arrays: 0.0002398184

 Total Time: 1.7812464102

 Number of input samples: 32768

 Time for disk access of input data: 0.0303366007

 Time to allocate the data caches for the MAP: 0.0023124818

 Time to pack the data for transfer to MAP: 0.0021618444

 Time for MAP allocation: 0.5487904255

 Time for MAP call: 0.0987779063

 Time to unpack results and send to output file: 0.0917617551

 Time to free the MAP: 1.0123094293

 Time to free the data arrays: 0.0002469738

 Total Time: 1.7866974169

 Number of input samples: 65536

 Time for disk access of input data: 0.0642365906

 Time to allocate the data caches for the MAP: 0.0049776484

 Time to pack the data for transfer to MAP: 0.0047179230

 Time for MAP allocation: 0.5696820675

 Time for MAP call: 0.1021540966

 Time to unpack results and send to output file: 0.1828584631

 Time to free the MAP: 1.0077824403

 Time to free the data arrays: 0.0004443910

 Total Time: 1.9368536205

 Number of input samples: 65536

 Time for disk access of input data: 0.0609015811

 Time to allocate the data caches for the MAP: 0.0075692546

 Time to pack the data for transfer to MAP: 0.0054795219

 Time for MAP allocation: 0.5880060163

114

 Time for MAP call: 0.1020899076

 Time to unpack results and send to output file: 0.1833274872

 Time to free the MAP: 1.0068394203

 Time to free the data arrays: 0.0004423104

 Total Time: 1.9546554993

 Number of input samples: 65536

 Time for disk access of input data: 0.0635116564

 Time to allocate the data caches for the MAP: 0.0055077909

 Time to pack the data for transfer to MAP: 0.0046081302

 Time for MAP allocation: 0.5434199974

 Time for MAP call: 0.1022932166

 Time to unpack results and send to output file: 0.1835829851

 Time to free the MAP: 1.0065619061

 Time to free the data arrays: 0.0004432341

 Total Time: 1.9099289168

 Number of input samples: 65536

 Time for disk access of input data: 0.0602645045

 Time to allocate the data caches for the MAP: 0.0064083445

 Time to pack the data for transfer to MAP: 0.0063568686

 Time for MAP allocation: 0.5564223806

 Time for MAP call: 0.1022868127

 Time to unpack results and send to output file: 0.1841379679

 Time to free the MAP: 1.0061306859

 Time to free the data arrays: 0.0004438511

 Total Time: 1.9224514159

 Number of input samples: 65536

 Time for disk access of input data: 0.0603332552

 Time to allocate the data caches for the MAP: 0.0076104885

 Time to pack the data for transfer to MAP: 0.0053092038

 Time for MAP allocation: 0.5615856629

 Time for MAP call: 0.1317872155

 Time to unpack results and send to output file: 0.1840570403

 Time to free the MAP: 1.0066493416

 Time to free the data arrays: 0.0004394368

115

 Total Time: 1.9577716446

 Number of input samples: 131072

 Time for disk access of input data: 0.1220448297

 Time to allocate the data caches for the MAP: 0.0093876077

 Time to pack the data for transfer to MAP: 0.0089142388

 Time for MAP allocation: 0.7330934388

 Time for MAP call: 0.1090398467

 Time to unpack results and send to output file: 0.6348346174

 Time to free the MAP: 1.0086661741

 Time to free the data arrays: 0.0009079930

 Total Time: 2.6268887462

 Number of input samples: 131072

 Time for disk access of input data: 0.1201003324

 Time to allocate the data caches for the MAP: 0.0093825150

 Time to pack the data for transfer to MAP: 0.0089177907

 Time for MAP allocation: 0.5360358666

 Time for MAP call: 0.1088606189

 Time to unpack results and send to output file: 0.5496880324

 Time to free the MAP: 1.0040097385

 Time to free the data arrays: 0.0009155073

 Total Time: 2.3379104019

 Number of input samples: 131072

 Time for disk access of input data: 0.1229936327

 Time to allocate the data caches for the MAP: 0.0093958263

 Time to pack the data for transfer to MAP: 0.0088779075

 Time for MAP allocation: 0.5349584831

 Time for MAP call: 0.1089405220

 Time to unpack results and send to output file: 0.6081954039

 Time to free the MAP: 1.0055497212

 Time to free the data arrays: 0.0009038526

 Total Time: 2.3998153493

 Number of input samples: 131072

 Time for disk access of input data: 0.1227266786

116

 Time to allocate the data caches for the MAP: 0.0094592113

 Time to pack the data for transfer to MAP: 0.0088770638

 Time for MAP allocation: 0.5336023561

 Time for MAP call: 0.1086331309

 Time to unpack results and send to output file: 0.6763001675

 Time to free the MAP: 1.0175269860

 Time to free the data arrays: 0.0009064127

 Total Time: 2.4780320070

 Number of input samples: 131072

 Time for disk access of input data: 0.1200560762

 Time to allocate the data caches for the MAP: 0.0093610427

 Time to pack the data for transfer to MAP: 0.0089234996

 Time for MAP allocation: 0.5939230269

 Time for MAP call: 0.1088982179

 Time to unpack results and send to output file: 0.6142954248

 Time to free the MAP: 1.0194287639

 Time to free the data arrays: 0.0009110189

 Total Time: 2.4757970710

 Number of input samples: 262144

 Time for disk access of input data: 0.2439861309

 Time to allocate the data caches for the MAP: 0.0188529759

 Time to pack the data for transfer to MAP: 0.0178578915

 Time for MAP allocation: 0.6893795544

 Time for MAP call: 0.1218434373

 Time to unpack results and send to output file: 1.1910147560

 Time to free the MAP: 1.0097043914

 Time to free the data arrays: 0.0017815761

 Total Time: 3.2944207134

 Number of input samples: 262144

 Time for disk access of input data: 0.2439314867

 Time to allocate the data caches for the MAP: 0.0188461833

 Time to pack the data for transfer to MAP: 0.0178297551

 Time for MAP allocation: 0.5352123523

 Time for MAP call: 0.1242827591

117

 Time to unpack results and send to output file: 1.3234282694

 Time to free the MAP: 1.0119794117

 Time to free the data arrays: 0.0017971567

 Total Time: 3.2773073744

 Number of input samples: 262144

 Time for disk access of input data: 0.2399882292

 Time to allocate the data caches for the MAP: 0.0188378134

 Time to pack the data for transfer to MAP: 0.0179187362

 Time for MAP allocation: 0.5406684882

 Time for MAP call: 0.1219761128

 Time to unpack results and send to output file: 1.2522615479

 Time to free the MAP: 1.0082841585

 Time to free the data arrays: 0.0017902603

 Total Time: 3.2017253466

 Number of input samples: 262144

 Time for disk access of input data: 0.2455214649

 Time to allocate the data caches for the MAP: 0.0190074293

 Time to pack the data for transfer to MAP: 0.0178621577

 Time for MAP allocation: 0.5320163383

 Time for MAP call: 0.1217802391

 Time to unpack results and send to output file: 1.2010226196

 Time to free the MAP: 1.0097881788

 Time to free the data arrays: 0.0018161935

 Total Time: 3.1488146211

 Number of input samples: 262144

 Time for disk access of input data: 0.2401958352

 Time to allocate the data caches for the MAP: 0.0190414892

 Time to pack the data for transfer to MAP: 0.0178416384

 Time for MAP allocation: 0.5350196342

 Time for MAP call: 0.1220957637

 Time to unpack results and send to output file: 1.2980060737

 Time to free the MAP: 1.0024299308

 Time to free the data arrays: 0.0018355162

 Total Time: 3.2364658814

118

 Number of input samples: 500000

 Time for disk access of input data: 0.4576555924

 Time to allocate the data caches for the MAP: 0.0357430988

 Time to pack the data for transfer to MAP: 0.0341176347

 Time for MAP allocation: 0.5400339917

 Time for MAP call: 0.1453687382

 Time to unpack results and send to output file: 2.2802877245

 Time to free the MAP: 1.0271661955

 Time to free the data arrays: 0.0034380277

 Total Time: 4.5238110034

 Number of input samples: 500000

 Time for disk access of input data: 0.4639648099

 Time to allocate the data caches for the MAP: 0.0356763230

 Time to pack the data for transfer to MAP: 0.0341234227

 Time for MAP allocation: 0.5855113962

 Time for MAP call: 0.1453061264

 Time to unpack results and send to output file: 2.4983290645

 Time to free the MAP: 1.0092234109

 Time to free the data arrays: 0.0034494809

 Total Time: 4.7755840344

 Number of input samples: 500000

 Time for disk access of input data: 0.4578109535

 Time to allocate the data caches for the MAP: 0.0359110724

 Time to pack the data for transfer to MAP: 0.0339820569

 Time for MAP allocation: 0.5354018536

 Time for MAP call: 0.1452250762

 Time to unpack results and send to output file: 2.6184729122

 Time to free the MAP: 1.0091233435

 Time to free the data arrays: 0.0034339475

 Total Time: 4.8393612159

 Number of input samples: 500000

 Time for disk access of input data: 0.4575756039

 Time to allocate the data caches for the MAP: 0.0357971735

119

 Time to pack the data for transfer to MAP: 0.0339763491

 Time for MAP allocation: 0.5455715893

 Time for MAP call: 0.1451846370

 Time to unpack results and send to output file: 2.4218357695

 Time to free the MAP: 1.0357822277

 Time to free the data arrays: 0.0033822233

 Total Time: 4.6791055732

 Number of input samples: 500000

 Time for disk access of input data: 0.4678256030

 Time to allocate the data caches for the MAP: 0.0413532404

 Time to pack the data for transfer to MAP: 0.0363923355

 Time for MAP allocation: 0.5508184513

 Time for MAP call: 0.1455726750

 Time to unpack results and send to output file: 2.2853761229

 Time to free the MAP: 1.0018905374

 Time to free the data arrays: 0.0033834348

 Total Time: 4.5326124002

B. SRC-6E C PROGRAM DATA

Time to complete 32 samples: 0.1400 seconds.

Time to complete 32 samples: 0.1300 seconds.

Time to complete 32 samples: 0.1300 seconds.

Time to complete 32 samples: 0.1300 seconds.

Time to complete 32 samples: 0.1400 seconds.

Time to complete 64 samples: 0.1400 seconds.

Time to complete 64 samples: 0.1200 seconds.

Time to complete 64 samples: 0.1200 seconds.

Time to complete 64 samples: 0.1100 seconds.

Time to complete 64 samples: 0.1200 seconds.

Time to complete 128 samples: 0.1200 seconds.

Time to complete 128 samples: 0.1200 seconds.

Time to complete 128 samples: 0.1200 seconds.

Time to complete 128 samples: 0.1500 seconds.

Time to complete 128 samples: 0.1200 seconds.

Time to complete 256 samples: 0.1200 seconds.

Time to complete 256 samples: 0.1200 seconds.

Time to complete 256 samples: 0.1200 seconds.

120

Time to complete 256 samples: 0.1200 seconds.

Time to complete 256 samples: 0.1200 seconds.

Time to complete 512 samples: 0.1200 seconds.

Time to complete 512 samples: 0.1200 seconds.

Time to complete 512 samples: 0.1200 seconds.

Time to complete 512 samples: 0.1200 seconds.

Time to complete 512 samples: 0.1200 seconds.

Time to complete 1024 samples: 0.1200 seconds.

Time to complete 1024 samples: 0.1200 seconds.

Time to complete 1024 samples: 0.1200 seconds.

Time to complete 1024 samples: 0.1300 seconds.

Time to complete 1024 samples: 0.1200 seconds.

Time to complete 2048 samples: 0.1200 seconds.

Time to complete 2048 samples: 0.1300 seconds.

Time to complete 2048 samples: 0.1300 seconds.

Time to complete 2048 samples: 0.1200 seconds.

Time to complete 2048 samples: 0.1300 seconds.

Time to complete 4096 samples: 0.1300 seconds.

Time to complete 4096 samples: 0.1300 seconds.

Time to complete 4096 samples: 0.1300 seconds.

Time to complete 4096 samples: 0.1400 seconds.

Time to complete 4096 samples: 0.1400 seconds.

Time to complete 8192 samples: 0.1500 seconds.

Time to complete 8192 samples: 0.1500 seconds.

Time to complete 8192 samples: 0.1500 seconds.

Time to complete 8192 samples: 0.1500 seconds.

Time to complete 8192 samples: 0.1500 seconds.

Time to complete 16384 samples: 0.2100 seconds.

Time to complete 16384 samples: 0.1800 seconds.

Time to complete 16384 samples: 0.1600 seconds.

Time to complete 16384 samples: 0.1800 seconds.

Time to complete 16384 samples: 0.1800 seconds.

Time to complete 32768 samples: 0.2600 seconds.

Time to complete 32768 samples: 0.2500 seconds.

Time to complete 32768 samples: 0.2600 seconds.

Time to complete 32768 samples: 0.2600 seconds.

Time to complete 32768 samples: 0.2600 seconds.

121

Time to complete 65536 samples: 0.3800 seconds.

Time to complete 65536 samples: 0.3500 seconds.

Time to complete 65536 samples: 0.3500 seconds.

Time to complete 65536 samples: 0.3500 seconds.

Time to complete 65536 samples: 0.3700 seconds.

Time to complete 131072 samples: 0.6000 seconds.

Time to complete 131072 samples: 0.6700 seconds.

Time to complete 131072 samples: 0.6600 seconds.

Time to complete 131072 samples: 0.6300 seconds.

Time to complete 131072 samples: 0.6100 seconds.

Time to complete 262144 samples: 1.1200 seconds.

Time to complete 262144 samples: 1.0700 seconds.

Time to complete 262144 samples: 1.2800 seconds.

Time to complete 262144 samples: 1.1300 seconds.

Time to complete 262144 samples: 1.1800 seconds.

Time to complete 500000 samples: 2.0300 seconds.

Time to complete 500000 samples: 2.0400 seconds.

Time to complete 500000 samples: 2.0400 seconds.

Time to complete 500000 samples: 2.0300 seconds.

Time to complete 500000 samples: 2.0700 seconds.

C. WINDOWS C PROGRAM DATA

Time to complete 32 samples: 0.0310 seconds.

Time to complete 32 samples: 0.0460 seconds.

Time to complete 32 samples: 0.0460 seconds.

Time to complete 32 samples: 0.0460 seconds.

Time to complete 32 samples: 0.0460 seconds.

Time to complete 64 samples: 0.0460 seconds.

Time to complete 64 samples: 0.0460 seconds.

Time to complete 64 samples: 0.0460 seconds.

Time to complete 64 samples: 0.0460 seconds.

Time to complete 64 samples: 0.0460 seconds.

Time to complete 128 samples: 0.0310 seconds.

Time to complete 128 samples: 0.0460 seconds.

Time to complete 128 samples: 0.0460 seconds.

Time to complete 128 samples: 0.0460 seconds.

Time to complete 128 samples: 0.0460 seconds.

Time to complete 256 samples: 0.0460 seconds.

122

Time to complete 256 samples: 0.0460 seconds.

Time to complete 256 samples: 0.0460 seconds.

Time to complete 256 samples: 0.0620 seconds.

Time to complete 256 samples: 0.0620 seconds.

Time to complete 512 samples: 0.0460 seconds.

Time to complete 512 samples: 0.0460 seconds.

Time to complete 512 samples: 0.0460 seconds.

Time to complete 512 samples: 0.0460 seconds.

Time to complete 512 samples: 0.0620 seconds.

Time to complete 1024 samples: 0.0620 seconds.

Time to complete 1024 samples: 0.0620 seconds.

Time to complete 1024 samples: 0.0620 seconds.

Time to complete 1024 samples: 0.0620 seconds.

Time to complete 1024 samples: 0.0620 seconds.

Time to complete 2048 samples: 0.0620 seconds.

Time to complete 2048 samples: 0.0620 seconds.

Time to complete 2048 samples: 0.0620 seconds.

Time to complete 2048 samples: 0.0620 seconds.

Time to complete 2048 samples: 0.0620 seconds.

Time to complete 4096 samples: 0.0620 seconds.

Time to complete 4096 samples: 0.0620 seconds.

Time to complete 4096 samples: 0.0620 seconds.

Time to complete 4096 samples: 0.0780 seconds.

Time to complete 4096 samples: 0.0780 seconds.

Time to complete 8192 samples: 0.0930 seconds.

Time to complete 8192 samples: 0.0930 seconds.

Time to complete 8192 samples: 0.0930 seconds.

Time to complete 8192 samples: 0.0930 seconds.

Time to complete 8192 samples: 0.0930 seconds.

Time to complete 16384 samples: 0.1240 seconds.

Time to complete 16384 samples: 0.1240 seconds.

Time to complete 16384 samples: 0.1400 seconds.

Time to complete 16384 samples: 0.1400 seconds.

Time to complete 16384 samples: 0.1400 seconds.

Time to complete 32768 samples: 0.2030 seconds.

Time to complete 32768 samples: 0.2180 seconds.

Time to complete 32768 samples: 0.2180 seconds.

123

Time to complete 32768 samples: 0.2180 seconds.

Time to complete 32768 samples: 0.2180 seconds.

Time to complete 65536 samples: 0.3280 seconds.

Time to complete 65536 samples: 0.3430 seconds.

Time to complete 65536 samples: 0.3430 seconds.

Time to complete 65536 samples: 0.3430 seconds.

Time to complete 65536 samples: 0.4370 seconds.

Time to complete 131072 samples: 0.5780 seconds.

Time to complete 131072 samples: 0.5780 seconds.

Time to complete 131072 samples: 0.5930 seconds.

Time to complete 131072 samples: 0.5930 seconds.

Time to complete 131072 samples: 0.5930 seconds.

Time to complete 262144 samples: 1.0620 seconds.

Time to complete 262144 samples: 1.0780 seconds.

Time to complete 262144 samples: 1.0780 seconds.

Time to complete 262144 samples: 1.0780 seconds.

Time to complete 262144 samples: 1.1240 seconds.

Time to complete 500000 samples: 2.0310 seconds.

Time to complete 500000 samples: 2.0310 seconds.

Time to complete 500000 samples: 2.8900 seconds.

Time to complete 500000 samples: 3.1710 seconds.

Time to complete 500000 samples: 3.1710 seconds.

124

THIS PAGE INTENTIONALLY LEFT BLANK

125

LIST OF REFERENCES

[1] David Caliga and David Peter Barker, “Delivering Accel-

eration: The Potential for Increased HPC Application Per-

formance Using Reconfigurable Logic,” ACM 1-58113-293-

X/01/0011, November 2001.

[2] “SRC-6E MAP© Hardware Guide,” SRC-005-03, SRC Com-

puters, Inc., Colorado Springs, January 6, 2003.

[3] “Virtex-II Platform FPGAs: Complete Data Sheet, DC and

Switching Characteristics,” DS031-3 (v3.1), Xilinx, Inc.,

San Jose, CA, October 14, 2003. From website:

http://direct.xilinx.com/bvdocs/publications/ds031.pdf, ac-

cessed December 2003.

[4] “SRC-6E C Programming Environment V1.5 Guide,” SRC-007-

08, SRC Computers Inc., Colorado Springs, September 5,

2003.

[5] “SRC-6E Fortran Programming Environment V1.5 Guide,”

SRC-006-08, SRC Computers Inc., Colorado Springs, September

5, 2003.

[6] “SRC-6E MAP© Macro Developers Guide,” SRC-008-01, SRC

Computers Inc., Colorado Springs, September 23, 2002.

[7] “SRC-6E Programming Environment V1.5 Technical Note:

Supported Macros,” SRC Computers Inc., Colorado Springs,

September 5, 2003.

[8] Charles H. Roth, Jr., Digital Systems Design Using

VHDL, PWS Publishing Company, Boston, 1998.

[9] Author Unknown. Unpublished project notes from previ-

ous work. Naval Postgraduate School.

126

THIS PAGE INTENTIONALLY LEFT BLANK

127

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Alan Hunsberger
National Security Agency
Ft. Meade, MD

5. Dr. Russell Duren
Baylor University
Engineering Department
Rogers, TX

